Abstract:
Low profile radial tires for trucks and buses reinforced with steel cords which comprise two layers of a core and an outer layer, the number of core filaments being 3 to 4 and the number of outer filaments being equal to or less than the number 5 greater than the number of the core filaments, all filaments being substantially equal in diameter and both the core filaments and the outer filaments being twisted in the same direction with a different pitch, and the aspect ratio of the tire being at most 0.85.
Abstract:
A compact single-strand cord consisting of at least nine single wires of the same diameter twisted together in the same direction and with the same pitch, characterized in that, in cross-section, the cord has the shape of a compact stack of polygonal, preferably hexagonal, contour. The cord can be used for reinforcing rubber articles or elastomeric articles, in particular for reinforcing tires.The method of manufacture of the cord includes unwinding the wires from coils each consisting of a single wire. The wires are delivered by positive slip-drive rollers to a means for regrouping and a strand-laying means. The wires are assembled in a grid and die and twisted by an assembling twister. The wires are then guided through a double twist path loop, overtwisted, straightened and collected on a capstan.The machine for performing the process includes an unwinding means in the form of a plurality of feed bobbins, a positive slip-drive roller system, means for regrouping the advanced wires including a grid and a die, a revolving assembling twister and a spindle means including a loop and stationary cradle carrying an overtwisted, straightener and capstan for collecting the cord.
Abstract:
The flattened strand rope of the invention comprises wedge-shaped strands, each made up of wires wound on a core. At least a portion of the strand wires are fashioned as twisted wire groups in which the wires are sector-shaped and in contact with each other over helical surfaces. With such a structural embodiment of the flattened strand wire, use can be made of thin and, consequently, stronger and more flexible wires, thereby increasing the strength and flexibility of the rope and making for the use of the rope in the various branches of industry, including lifting mechanisms with large or small drum diameters.
Abstract:
Elevator, which includes at least an elevator car and a device for moving the elevator car, preferably along guide rails, and a counterweight, and one or more ropes, which rope connects the elevator car and the counterweight and is separate from the supporting function and passes around a diverting pulley mounted on the bottom end of the elevator hoistway. The rope comprises a power transmission part or a plurality of power transmission parts, for transmitting power in the longitudinal direction of the rope, which power transmission part is essentially fully of non-metallic material.
Abstract:
An object of the present invention is to make it possible to provide a cord, in particular, a cord for reinforcing a rubber article in which rubber permeation properties are improved by coating filaments as constituents of the cord with rubber in a reliable and stable manner. The cord of the present invention is produced by, when the metal filament is guided to an extruder and extruded together with rubber from a mouthpiece of the extruder so that the metal filament is coated with the rubber, juxtaposing plural metal filaments in the mouthpiece and extruding the metal filaments together with rubber.
Abstract:
A method for manufacturing a rope includes providing at least one pre-manufactured elongated load bearing member for the rope and at least one pre-manufactured elongated surface part for the rope, guiding together said at least one pre-manufactured elongated load bearing member and said at least one pre-manufactured elongated surface part such that their sides lean against each other, and fixing said at least one pre-manufactured elongated load bearing member and said at least one pre-manufactured elongated surface part to each other. A rope obtained with the method, and an elevator including the rope obtained with the method are also disclosed.
Abstract:
A rope structure comprising a core component comprising core fibers combine to form a first rope structure and a first cover component comprising first cover strands comprising first cover fibers within a first matrix material. The first cover strands are arranged around at least a portion of the core component.
Abstract:
There is provided a steel cord including a plurality of untwisted core filaments of steel aligned in parallel, and a layer of sheath filaments of steel twisted around the core filaments so as to be unevenly distributed around the core filaments, wherein interstices between the filaments are maintained during vulcanization thereby achieving improved rubber penetration (sufficiently adhering rubber to the core filaments). Since the cross sectional length of the steel cord 10 is greater than the minimum cross sectional length, interstices A are maintained between sheath filaments 14 under the tension and pressure p of the surrounding rubber 16 applied to the steel cord 10 during vulcanization. Rubber 16 penetrates into the steel cord 10 through the interstices A, and sufficiently adhere to core filaments 12 to achieve high rubber penetration.
Abstract:
There is provided a steel cord including a plurality of untwisted core filaments of steel aligned in parallel, and a layer of sheath filaments of steel twisted around the core filaments so as to be unevenly distributed around the core filaments, wherein interstices between the filaments are maintained during vulcanization thereby achieving improved rubber penetration (sufficiently adhering rubber to the core filaments). Since the cross sectional length of the steel cord 10 is greater than the minimum cross sectional length, interstices A are maintained between sheath filaments 14 under the tension and pressure p of the surrounding rubber 16 applied to the steel cord 10 during vulcanization. Rubber 16 penetrates into the steel cord 10 through the interstices A, and sufficiently adhere to core filaments 12 to achieve high rubber penetration.