Abstract:
An air conditioning apparatus includes a refrigerant circulation circuit that has a compressor. A driving status of the compressor is detected by first detector. A first calculator calculates a theoretical torque and a driving efficiency of the compressor based on information from the first detector. A second calculator calculates a necessary torque required for driving the compressor. The second calculator calculates the necessary torque based on the theoretical torque.
Abstract:
Disclosure is made of a method for electronic polar attenuation of torque profile for positive displacement pumps by a processor where the attenuated torque profile is compared with the shaft displacement angle of the pump input shaft. The processor then signals a motor to power a pump with the result of pumping at a constant pressure at the full range of the designed system flow volume. In addition to the attenuated torque profile, the processor can also account for the response time of the pump drive, the motor inductive reactance, system inertia, application characteristics of the pump, and regenerative energy during deceleration of the pump.
Abstract:
A pump-motor apparatus comprising: a pump having an input shaft for receiving motive force to operate the pump, wherein during rotation of the input shaft, the pump exhibits repeating cyclical first torque variations on the input shaft, said first torque variations including cyclical torque peaks and torque dips and occurring in substantially evenly spaced increments in angular position of the input shaft; and an electric drive motor having an output shaft coupled to and driving the input shaft, wherein the electric drive motor exhibits on the output shaft repeating cyclical second torque variations, said second torque variations including cyclical torque peaks and torque dips and occurring in substantially evenly spaced increments in angular position of the output shaft, wherein the substantially evenly spaced increments in angular position of the output shaft are equal to the substantially evenly spaced angular increments in position of the input shaft, wherein torque peaks and dips of the output shaft second torque variations are aligned with the torque peaks and dips of the input shaft first torque variations.
Abstract:
An electrical submersible well pump assembly has a SAW (surface acoustic wave) sensor on a motor shaft. A SAW electronic circuit mounts to the motor housing. The SAW electronic circuit has an antenna closely spaced to the SAW sensor for monitoring torque on the motor shaft. A controller at an upper end of the well supplies power to the motor. A motor gauge unit mounted to a lower end of the motor transmits signals to the controller. A signal line extends from the SAW electronic circuit to the motor gauge unit for transmitting signals from the SAW electronic circuit to the motor gauge unit, and from the motor gauge unit to the controller.
Abstract:
A method implemented by at least one processor includes receiving a plurality of operating parameters of a pumping system, wherein the pumping system has a plurality of pump-units powered by a generator-unit. The operating parameters include a pump-unit parameter and a generator-unit parameter. The method also includes receiving reference data of the pumping system, wherein the reference data includes measurements from the pumping system representative of performance of the plurality of pump-units. The method also includes determining one or more health parameters corresponding to one or more pump-units based on the plurality of operating parameters and the reference data. The method further includes modifying one or more input parameters of the generator-unit based on the one or more health parameters for continued operation of the pumping system.
Abstract:
A hydraulic pressure control device comprising: a hydraulic sensor provided between a hydraulic pump and a load; a speed command arithmetic unit configured to output a speed command value Vc based on a difference between a hydraulic pressure detection value Pd from the hydraulic sensor and a hydraulic pressure command value Pc; a torque command value arithmetic unit configured to calculate a torque command value Tc based on a difference between a speed detection value Vd of a motor and the speed command value Vc; a current controller configured to control current of the motor based on the torque command value Tc; and a hydraulic pressure abnormality detector configured to detect whether a hydraulic circuit has abnormality based on the speed command value Vc and an operating condition of the load of the hydraulic circuit commanded from an upper-level control device.
Abstract:
The present invention provides a hydraulic pump for use in driving a load with a control modulation system which modulates a primary control signal in order to accommodate variations in secondary changeable parameters which require control at a higher frequency or have a lower latency.
Abstract:
A control unit is configured to calculate a target absorption torque of a hydraulic pump at which the engine output torque and the absorption torque of the hydraulic pump match a target matching rotation speed of the engine. The control unit is configured to refer to command data, calculate a command current value corresponding to the target absorption torque, and output a command signal of the calculated value to a pump control device. The control unit is configured to calculate the absorption torque at calibration points at which there is an equilibrium state in which the output horsepower of the engine and the absorption horsepower of the hydraulic pump are matched. The control unit is configured to acquire calibration information including the calculated absorption torque and the command current value output to the pump control device in the equilibrium state, and calibrate the command data based on the calibration information.
Abstract:
In an engine load control device of a work vehicle, an output of an engine is transmitted to a hydraulic actuator via a variable displacement type hydraulic pump. A controller is configured to calculate, based on a target rotational speed of the engine detected by a target rotational speed detecting portion and an actual rotational speed of the engine detected by an actual rotational speed detecting portion, a variation rate per unit time of a difference between the detected results, and to adjust the maximum absorbing torque of the hydraulic pump according to the magnitude of the variation rate.
Abstract:
An engine load control device is adapted to a working vehicle in which output of an engine is transmitted to drive wheels and to hydraulic actuators including a working equipment hydraulic actuator via a plurality of variable capacity hydraulic pumps. The control device includes an engine speed detection unit that detects an engine speed, an instruction content detection unit that detects contents of instructions of a speed instruction device, a hydraulic pump load detection unit that detects load of at least one load detection hydraulic pump among the variable capacity hydraulic pumps, and an absorption torque control unit. The absorption torque control unit controls absorption torque of at least one control hydraulic pump other than the load detection hydraulic pump based on detection results of the engine speed detection unit, the instruction content detection unit, and the hydraulic pump load detection unit.