Abstract:
An apparatus that conducts in situ analyses of fluids in real time is disclosed. The apparatus comprises bifurcated optic fibers, a pulsed light source, a light detector, a water-tight pressure case that houses the pulsed light source and the light detector, and a flow-through cell that receives one end of each bifurcated optic fiber. The flow-through cell may comprise a plurality of attached tube sections that define a volume which acts as a passageway for conducting fluids. One or more sections of the flow-through cell may be adapted to introduce a reagent into fluid flowing through the cell. Sections of the cell may contain potassium periodate and N,N-diethylaniline that are released into a fluid flowing through the passageway, enabling the spectrophotometer to analyze manganese (II) concentrations by monitoring the decrease in fluorescence accompanying the oxidation of DEA to 2 DEA'. The fluid may also be analyzed by measuring reflectance, absorption, turbidity, and fluorescence.
Abstract:
An arrangement through which the concentration of fluorescent materials, when present in low quantities, may be measured within a fluid. A transmitter is flashed periodically at a rate corresponding to the rate that measurements are taken, for the purpose of exciting the fluorescent materials. Filters and optical systems are provided at the transmitter for transmitting the appropriate light. A receiver spaced from the transmitter or light source is also equipped with appropriate filters and optical systems, and receives on a photosensor, the radiation from the fluorescent materials. The resultant electrical signals from the photosensors are amplified and compensated against daylight and cloudy effects of the medium, through an auxiliary amplifier.
Abstract:
A system (300) for monitoring at least one parameter of a fluid contained in a container (30), which comprises: a measuring device (10) based on near-infrared spectroscopy designed to be submerged in the cited fluid to be monitored and to take measurements of said fluid, wherein said measuring device (10) comprises a measuring area (13, M, M'). The monitoring system (300) comprises a flotation system (32) joined to said measuring device (10), said flotation system (32) being arranged, during the use of the monitoring system (300), floating on the fluid to be monitored such that the measuring area (13, M, M') of the measuring device (10) is submerged in the fluid at a constant depth (D, D') with respect to the level of fluid (N) in the container (30), such that all the measurements taken by the measuring device (10) are taken at the same depth with respect to the level of the fluid (N).
Abstract:
A submersible fluorometer (10), includes: an excitation module (40) for exciting the fluorophore; and a detection module (42) for detecting the light emitted by the excited fluorophore, wherein the excitation module (40) includes a first light source (44) including a first UV LED and having a first wavelength lower than 300 nm, the excitation module (40) includes a second light source (46) including a second UV LED and having a second wavelength lower than 300 nm, the first and second wavelengths being different from each other, and the fluorometer includes an electronic circuit having a plurality of printed circuits positioned one below the other.
Abstract:
A sensing apparatus and corresponding method for monitoring carbon dioxide dissolved in a liquid solution employs a crystal (20) surrounded in part by a sample chamber (14) such that, in use, the liquid solution (22) is in direct contact with the crystal.
Abstract:
Die Erfindung bezieht sich auf einen Flüssigkeitsanalysegerät (10) zur fotometrischen Bestimmung eines Analyts in einer Flüssigkeit. Das Flüssigkeitsanalysegerät weist ein stationäres Basismodul (12) auf, das ein Fotometer (50) ohne Messstrecke (68) und keine flüssigkeitsführenden Leitungen aufweist. Erste Flüssigkeitsanalysegerät (10) weist ferner ein austauschbares Fluidikmodul (14) auf, das alle flüssigkeitsführenden Leitungen mit einem die Messstrecke (68) bildenden Messkanal (32) und eine Entgasungsvorrichtung (70) zum Entgasen der Flüssigkeit aufweist. Die Entgasungsvorrichtung (70) weist einen den Messkanal (32) radial umschließenden Frittenkörper (90) auf, der an eine Unterdruckquelle (76) angeschlossen ist.