Abstract:
An illuminating apparatus includes a columnar light guide, a board having a light source fastened on one surface thereof, and a holder. The holder is formed with a through-hole into which an end of the light guide in the columnar center axis direction is fitted to hold the light guide, and a catch that catches and holds the board with the light source facing the end surface of the light guide in the columnar center axis direction in the through-hole.
Abstract:
A mounting device capable of mounting two objects of different sizes is disclosed. The mounting device includes a mounting member including a first end, a second end opposite to the first end, a mounting portion, a securing piece between the first end and the second end, and an installing plate including a first installing portion and a second installing portion. The mounting member is secured to the first installing portion and the second installing portion. When the mounting portion and the securing piece are engaged with the first installing portion, the first end is adapted to abut a first object. When the mounting portion and the installing portion are engaged with the second installing portion, the second end is adapted to abut a second object of a different size from a size of the first object.
Abstract:
A protruding locking pawl is provided at an end of a light guide which corresponds to a first light input surface. A recessed locking portion is formed in a frame so that the locking pawl can be locked in the locking portion. A light blocking member is slidably loosely inserted into a position where the light blocking member covers a longitudinal end of the light guide which corresponds to a second light input surface. Even if expansion and contraction occurs in the longitudinal direction of the light guide, the design dimensions of a first gap A and a second gap B can be maintained; the first gap A is formed between the first light input surface and a first light source, and the second gap B formed between the second light input surface and a second light source. Therefore, possible leakage current can be prevented.
Abstract:
This image reading apparatus, includes: a first retaining member that retains a lens unit; a second retaining member that retains a sensor unit; and a positioning member that sets a relative position between the first retaining member and the second retaining member, wherein the positioning member comprises: a first concave portion that is sagged from a first contact surface to be in contact with the first retaining member; and a second concave portion that is sagged from a second contact surface to be in contact with the second retaining member, and the positioning member is fixed to the first retaining member and the second retaining member by an adhesive filled in the first concave portion and the second concave portion.
Abstract:
An optical unit including a lens unit including a lens and an optical element configured to receive a light beam focused by the lens, and a support member configured to support the lens unit. Cutouts are provided on joint surfaces of the lens unit and the support member, respectively, such that the cutouts on the joint surface of the lens unit match the cutouts on the joint surface of the support member. The cutouts are configured to accommodate a jig inserted thereinto and rotated to move the lens unit relative to the support member and adjust a position of the lens unit in a direction parallel to an optical axis of the lens.
Abstract:
A lens block according to the present invention includes a lens cylinder; and at least one lens accommodated in the lens cylinder and dividing a space in the lens cylinder into a first space and a second space, wherein the lens cylinder includes at least one hole into which a tool for removing the at least one lens from the lens cylinder is inserted, wherein the at least one lens is pressed into the lens cylinder from either one of the first space and the second space, and the at least one hole is formed on the other of the first space and the second space, and wherein the at least one hole is provided in a position that enables the inserted tool to contact the at least one lens through the at least one hole.
Abstract:
A structure of a line lighting device permits a rod-like light guide to be attached to a case without rubbing against the case. An end portion of the rod-like light guide provided with a pin is inserted into an opening in a case main body and pushed down, thus making the pin engage with a recess in the case main body. At this time, a distal end of the rod-like light guide is inserted, to some extent, into an opening in a light emitting unit fixing portion. Subsequently, the rod-like light guide is pushed down and pivoted around the pin so as to be completely contained within the case main body. In this state, the distal end of the rod-like light guide is fitted into the opening and the end face of the rod-like light guide is flush with the outer side face of the light emitting unit fixing portion.
Abstract:
An optical scanning apparatus constructed to dispose optical elements guiding light beams to a deflector such as a rotary polygon mirror at a low cost with high accuracy, includes a first light source, a second light source, a deflector, a first optical member provided on a first optical path between the first light source and the deflector, a second optical member provided on a second optical path between the second light source and the deflector, and one wall holding both of a side surface of the first optical member and a side surface of the second optical member.
Abstract:
A securing device includes a sustaining member, a plurality of threaded holes, and a plurality of screws. The sustaining member includes a clamped portion and a securing portion extending from the clamped portion. The clamped portion is interfaced between the photoelectric conversion device and the carriage module housing. The thickness of the clamped portion is even enough to keep the distance between the photoelectric conversion device and the carriage module housing constant, thereby assuring that the photoelectric conversion device is orthogonal to the central line of a lens in the carriage module housing. The securing portion is flexible so as to facilitate the assembling operation of the circuit board, the photoelectric conversion device and the carriage module housing by way of the threaded holes and screws.
Abstract:
A compact, low-cost photographic film scanner particularly adapted to scanning Advance Photo System (APS) film includes an imaging assembly having an elongated L-shaped housing with a photosensor, e.g. a CCD, mounted directly to one end of the housing, the other end having a scanning aperture and film rails integrally formed on the housing, the film rails defining a film plane over the scanning aperture. The housing comprises a two piece snap together configuration that provides support for the focusing lens as well the photosensor and film scan gate. Additionally, the housing includes support arms that receive and lock in place an LED illuminant head assembly. The imaging apparatus housing conveniently snap locks into place on the scanner chassis in an opening formed in the film drive path.