Abstract:
An image processor includes a reading unit that moves a scanning optical system toward a reference white sheet to read the reference white sheet from a direction along which the scanning optical system returns to the carried document reading glass before reading one sheet of a document mounted on a carried document reading glass by an automatic document feeding unit in a sheet document reading mode of forming an image of the document carried by the automatic document feeding unit by an image sensor through the scanning optical system facing the carried document reading glass.
Abstract:
An image reading apparatus includes a platen for placing the original, a reading device for reading the original placed on the platen to obtain image data in a first reading mode or a second reading mode; a transport device for transporting the original to be capable of returning the original to the platen; and a detection device for determining whether the image data read by the reading device is a first kind of data or a second kind of data. A control device operates the transport device for ejecting the original and outputting the image data read in the first reading mode when the image data is the first kind, and operates the transport device to return the original to the platen and actuates the reading device to read in the second reading mode when the image data is the second kind.
Abstract:
In a flat bed type scanner, while a control unit (24) for generating a secondary control signal and for controlling a CCD (22) is separated from an image processing ASIC (46) for generating a primary clock signal as a base signal of the secondary control signal, this scanner is arranged so as to generate the secondary control signal having the short pulse width from the primary clock signal having the long pulse width. This scanner employs such an arrangement that the primary clock signal having the long pulse width is transmitted via an FFC (40) which electrically connects the image processing ASIC (46) with the control unit (24).
Abstract:
A printing apparatus has high reliability both in manual feeding and in automatic feeding of a printing medium, and a feeding control method controls the printing apparatus. In the case of manual feeding of a sheet as the printing medium, the sheet is transported by an LF roller for an amount sufficient for feeding the tip end of the sheet to a discharge paper sensor located on the downstream side of a paper path with respect to a printing head. Judgment whether paper feeding is successful or not is made depending on whether the sheet is detected by the discharged paper sensor. On the other hand, in the case of automatic feeding using an automatic feeding apparatus, the operation of transporting the sheet to the discharged paper sensor is not performed. By this, in the case of automatic feeding, it becomes unnecessary to backwardly feed the sheet before initiation of printing so that the rotation amount of the LF roller is minimized.
Abstract:
An optical system for an image forming apparatus which a first light source for selectably emitting a plurality of image forming light beams based upon control signals and a second light source for emitting image forming light beams of a number of less than that of said first light source. The first light source of the optical system selectably emitting multiple light beams and a single beam, e.g. selectably emits two beams and a single beam.
Abstract:
An AOD is switched between a state capable of outputting 0th-order light and a state capable of outputting 1st-order light according to a switching signal, and a second delay signal which is produced by delaying the switching signal a given time is generated by a first delay unit and a second delay unit. 0th-order or 1st-order image data is supplied to a laser diode according to the second delay signal to record an image highly accurately on a recording film at a time selected in view of a response delay of the AOD.
Abstract:
A method and apparatus for speeding up the reading speed of a sequential I/O device, such as a Charge Coupled Device, is disclosed. The method involves in providing normal clocks for reading selected pixels and dummy clocks for reading unselected pixels. Since dummy clocks are faster than normal clocks, therefore the total time for processing the document can be less than using clocks of uniform speed. The apparatus of the invention comprises: a clock control device for generating two transfer pulses &phgr;1 and &phgr;2 in response to a clock cycle. The transfer pulses &phgr;1 and &phgr;2 are input to a sequential I/O device. The signal charge generated from the sequential I/O device will then output to an AND converter to be converted into digital signals. If the digital signals are marked, they will be latched. If not, they will simply be ignored.
Abstract:
There is described an imaging device for capturing images of at least portions of moving objects. The system comprises a stationary camera lens configured for reproducing an image of at least a portion of each moving object in an imaging plane when said object moves across a capturing region. The device further comprises at least one image sensor located in the imaging plane for receiving the reproduced image of the at least a portion of the corresponding moving object and converting said image into electronic signals. The at least one image sensor is mounted on a sensor support adapted to be actuated in a manner that the at least one image sensor is moved in the imaging plane relative to the stationary camera lens, and in a manner that the motion of said at least one image sensor is synchronized with the motion of the moving object to be captured. This ensures that there is substantially no relative movement between the reproduced image in the imaging plane and the image sensor when said moving object moves across the capturing region. As a result motion blur of the captured image of the at least a portion of each moving object is prevented or significantly reduced.
Abstract:
An image reader is provided, which includes a first analog front end unit configured to perform A/D conversion for analog signals that are output via a first group of channels of a number resulting from rounding up, to a closest whole number, an average value between a number of at least one channel for a first image reading unit and a number of channels for a second image reading unit, among analog signals output from the first image reading unit and the second image reading unit, and a second analog front end unit configured to perform A/D conversion for analog signals that are output via a second group of channels other than the channels in the first group, among the analog signals output from the first image reading unit and the second image reading unit.
Abstract:
An image reading apparatus including: a feeding device; a first reading unit that scans an image of a first surface of the document fed by the feeding device; a second reading unit that scans an image of a second surface of the document fed by the feeding device, wherein the second surface is opposite to the first surface; a first processing unit that processes the image data read by the first reading unit when performing a double-sided reading; a second processing unit that processes the image data read by the second reading unit when performing the double-sided reading, and a control unit that, when a one-sided reading of a following document is performed while one of the processing units is performing a processing of a one-sided reading of a preceding document, controls the other processing unit to perform processing of the one-sided reading of the following document.