Abstract:
A laser apparatus has a first mirror, a second mirror, at least a portion of which is defined by the first and second mirrors. The laser has an active region located in the laser cavity, which is capable of stimulated emission at one or more wavelengths of light. The second mirror comprises a plurality of dielectric layers arranged in parallel and having a reflectivity band with a peak reflectivity at a peak wavelength, said reflectivity band having a width of less than 1 nm at a reflectivity of 3 % less than the peak reflectivity. The laser apparatus may be a tunable laser apparatus in which the peak wavelength of the reflectivity band is adjusted, thereby adjusting the lasing wavelength of the laser. The reflectivity band may be a lasing threshold reflectivity band over which the reflectivity of the second mirror is greater than a lasing threshold reflectivity which is sufficient to permit lasing.
Abstract:
In accordance with an embodiment, a transmitter optical subassembly (TOSA) module is disclosed with a base portion that provides one or more mounting surfaces to mount a laser diode and associated driver circuitry in close proximity to allow for direct coupling without the use of an intermediate interconnect device, such as a flexible printed circuit or other interconnect device. The TOSA module base further includes a cylindrical shaped portion with a passageway extending therethrough. The substantially cylindrical shaped portion allows the TOSA module base to mount to a multi-channel TOSA housing via a Z-ring or other suitable welding ring without the use of an intermediate device such as a welding cap.
Abstract:
A heat transfer assembly may be used to provide a thermal conduit from a module mounted on a circuit board through the circuit board, allowing a thermal path away from the module. The heat transfer assembly generally includes a thermally conductive base with at least one raised thermal pedestal accessible through at least one heat transfer aperture in the circuit board and in thermal contact with the module. In an embodiment, the heat transfer assembly is used in a remote PHY device (RPD) in an optical node, for example, in a CATV/HFC network. The RPD includes an enclosure having a base with at least one raised thermal pedestal in thermal contact with an optical module (e.g., an optical transmitter or transceiver) on a circuit board through at least one heat transfer aperture in the circuit board.
Abstract translation:传热组件可用于通过电路板从安装在电路板上的模块提供热导管,从而允许远离模块的热路径。 传热组件通常包括具有至少一个升高的热基座的导热基座,所述升高的热基座可通过电路板中的至少一个传热孔进入并且与模块热接触。 在一个实施例中,传热组件被用在例如CATV / HFC网络中的光节点中的远程PHY设备(RPD)中。 RPD包括具有基座的外壳,该基座具有至少一个升高的热基座,该基座通过电路板中的至少一个传热孔与电路板上的光学模块(例如,光发射器或收发器)热接触。 p >
Abstract:
A coaxial transmitter optical subassembly (TOSA) including an optical fiber coupling receptacle coupled to a laser package may be used in an optical transceiver for transmitting an optical signal at a channel wavelength. The optical fiber coupling receptacle may include a housing having a first open end to receive a ferrule-terminated optical fiber. The receptacle may also include a fiber-coupling ferrule holding an optical fiber segment and secured within the housing to optically couple the optical fiber segment to a laser of the TOSA through a second open end of the housing opposite the first open end. The receptacle may further include a sleeve disposed on an interior surface of the housing to provide a cavity to secure the ferrule-terminated optical fiber and align the optical fiber to the optical fiber segment.
Abstract:
An optical sub-assembly cartridge for use in a multi-channel receiver optical sub-assembly (ROSA) is disclosed and includes pre-aligned demultiplexing optics. The optical sub-assembly cartridge may include a plurality of sidewalls which define a cartridge body and at least partially enclose a cavity therein. A sidewall of the cartridge body may include a sidewall opening configured to allow light to enter the cavity. A first optical filter disposed opposite the sidewall opening may receive light entering the cavity and be configured to pass unassociated channel wavelengths out of the cavity while reflecting associated channel wavelengths to a mirror disposed in the cavity. The mirror may then reflect the received channel wavelengths to a second optical filter within or external to the cavity. The second optical filter may emit a narrow spectrum of channel wavelengths to a photodiode package to convert the same to a proportional electrical signal.
Abstract:
A multi-channel receiver optical subassembly (ROSA) such as an arrayed waveguide grating (AWG), with outputs directly optically coupled to respective photodetectors such as photodiodes. In one embodiment, an AWG may be configured such that optical components of the AWG do not interfere with direct optical coupling, and the wire bonding points on the photodiodes may also be configured such that wire bonding does not interfere with direct optical coupling. The photodetectors may also be mounted on a photodetector mounting bar with a pitch sufficiently spaced to allow connection to floating grounds. A passive alignment technique may be used to determine the mounting locations on the photodetector mounting bar such that the photodetectors are aligned with the optical outputs.
Abstract:
A compact multi-channel optical may include a multi-channel transmitter optical subassembly (TOSA), a multi-channel receiver optical subassembly (ROSA) and a circuit board configured and arranged to fit within a relatively small space. The multi-channel ROSA is spaced from the circuit board to allow circuit components to be mounted between the circuit board and the ROSA. The multi-channel ROSA may also be inverted and mounted proximate a transceiver top housing portion, for example, using an L-shaped ROSA support, to transfer heat from the ROSA to the transceiver housing portion. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
Abstract:
A laser array mux assembly generally includes an array of laser emitters coupled to an optical multiplexer, such as an arrayed waveguide grating (AWG), with an external partial reflector after the multiplexer. Each of the laser emitters may include a gain region that emits light across a range of wavelengths including, for example, channel wavelengths in an optical communication system. The AWG filters the emitted light from each of the laser emitters at different channel wavelengths associated with each of the laser emitters. The reflector reflects at least a portion of the filtered light such that lasing occurs at the channel wavelengths of the reflected light. The laser array mux assembly may be used to generate an optical signal at a selected channel wavelength or to generate and combine optical signals at multiple channel wavelengths.
Abstract:
A wavelength-selectable laser device generally includes an array of laser emitters and a filtered external cavity for filtering light emitted from the laser emitters and reflecting different wavelengths back to each of the laser emitters such that lasing occurs at different wavelengths for each of the laser emitters. Each laser emitter includes a gain region that emits light across a plurality of wavelengths including, for example, channel wavelengths in an optical communication system. The filtered external cavity may include a dispersive optical element that receives the light from each of the laser emitters at different angles and passes or reflects different wavelengths at different angles such that only wavelengths associated with the respective laser emitters are reflected back to the respective laser emitters. By selectively emitting light from one or more of the laser emitters, one or more channel wavelengths may be selected for lasing and transmission.
Abstract:
A system for reducing clipping may be used between a multichannel RF source and a laser to reduce or correct clipping that might occur in the laser as a result of negative spikes or peaks in a multichannel RF signal. The system generally includes a clipping correction circuit that receives the multichannel RF signal and responsive to the RF signal, prevents one or more of the negative peaks in the RF signal from causing clipping. The clipping correction circuit may either detect an envelope of the RF signal and/or may detect one or more peaks in the RF signal. One or more negative peaks may be prevented from causing clipping by adjusting a bias current provided by a bias control circuit and/or by modifying the RF signal with one or more clipping correction pulses coinciding with one or more negative peaks.