ARナビゲーション方法及び装置
    64.
    发明专利

    公开(公告)号:JP2021089282A

    公开(公告)日:2021-06-10

    申请号:JP2020199494

    申请日:2020-12-01

    Abstract: 【課題】確定されたターン案内軌跡が車両の実際走行軌跡により近くなることを保証でき、それにより、ユーザ体験を改善するARナビゲーション方法および装置を提供する。 【解決手段】車両に取り付けられたカメラの較正パラメータおよび車両がナビゲーション経路で通過しようとする操作点の情報および車両の実際位置点の情報を取得し、車両がターン状態に入るという信号を受信したことに応答して、現在実際位置点の情報および操作点の情報に基づいて、車両の第1のターン案内軌跡を確定し、当該較正パラメータに基づいて、第1のターン案内軌跡を変換して第2のターン案内軌跡を取得し、そのうち、操作点の情報が、操作点座標および操作点での車両のナビゲーション方向を含み、車両の実際位置点の情報が、位置点座標および車両の実際走行方向を含む。 【選択図】図2

    車内電子制御ユニットのアップグレード方法、装置、機器及び車両システム

    公开(公告)号:JP2021083110A

    公开(公告)日:2021-05-27

    申请号:JP2021022018

    申请日:2021-02-15

    Inventor: チアオ スー

    Abstract: 【課題】車内電子制御ユニットのアップグレードのセキュリティ性の向上した車内電子制御ユニットのアップグレード方法、装置、機器及び車両システムを提供する。 【解決手段】車内電子制御ユニットのアップグレード方法において、ターゲットECUのファームウェアアップグレードデータを取得するS101。そして、ターゲットECUに対応するアップグレード暗号鍵に基づいて、ファームウェアアップグレードデータを暗号化して暗号化パケットを得るS102。ここで、アップグレード暗号鍵は、中央ゲートウェイ識別子、ターゲットECUのECU識別子及びターゲットECUの属する車両の車両識別コードVINに対応する。最後に、暗号化パケットをターゲットECUに伝送してファームウェアアップグレードを行う。暗号化パケットは、ターゲットECUによって解析されてファームウェアアップグレードデータを得るために使用されるS103。 【選択図】図2

    Control Pulse Generation Method, Apparatus, System, Device And Storage Medium

    公开(公告)号:AU2021240155A9

    公开(公告)日:2022-10-06

    申请号:AU2021240155

    申请日:2021-09-28

    Abstract: The present disclosure provides a control pulse generation method, an apparatus, a system, a device and a storage medium, which are related to the field of quantum computing. The method is specifically implemented as follows: acquiring a system Hamiltonian; acquiring an initial control pulse of a quantum logic gate included in a parameterized quantum circuit to obtain an initial pulse sequence for a gate sequence formed for all the quantum logic gates in the parameterized quantum circuit, the initial control pulse being obtained through simulation based on the system Hamiltonian; acquiring system state information of the quantum system obtained after applying the initial pulse sequence to the target quantum hardware device; adjusting a parameter of the parameterized quantum circuit based on a relationship between the system state information and target state information needed to be achieved by the target quantum control task, to adjust a pulse parameter of the initial pulse sequence to obtain a target pulse sequence, wherein the target quantum control task can be achieved after the target pulse sequence is applied to the target quantum hardware device. (FIG. 1) - 1/9 Cd 4-. -o UQc Cd m-4 Cd -3 -4- u-..3 rJ d . - r. V 0 0 0 -0 -o0 4- c" >1 V- c).n. -4- -4. -4-.C cn 0 Cdo 0 1 >0 0

    Method and system for eliminating quantum measurement noise, electronic device and medium

    公开(公告)号:AU2022200187A1

    公开(公告)日:2022-09-29

    申请号:AU2022200187

    申请日:2022-01-13

    Abstract: Abstract A method includes: determining a maximum number Z of times for executing a measuring device continuously; operating the quantum computer to perform, for each integer k in a set {0, 1, ... , K} comprising Z integers, M 1 quantum computation processes to generate, for each quantum computation process, of the M1 quantum computation processes, an intermediate measurement result, wherein, in each quantum computation process, the quantum computer is operated to generate an n-qubit quantum state p, and continuously execute the measuring device for k + 1 times, so as to obtain the intermediate measurement result of the quantum computation process; operating a classical computer to compute an average measurement result of the M1 quantum computation processes; and operating the classical computer to determine, by means of Neumann series based on the average measurement result(s) corresponding to all the integers k, unbiased estimation of a computed result of eliminating quantum measurement noise. Drawings of the Description _ _Classicalbit P output Fig. 3 102401 1021 401 1021 Fig. 4 1021 Classical bit p* ~ output M Qubit output Fig. 5 _02 _ 1021 Fig. 6

    QUANTUM PULSE DETERMINING METHOD, APPARATUS, DEVICE AND READABLE STORAGE MEDIUM

    公开(公告)号:AU2020233743A1

    公开(公告)日:2021-08-26

    申请号:AU2020233743

    申请日:2020-09-18

    Abstract: The present disclosure provides a quantum pulse determining method, apparatus, device and readable storage medium, where basic pulses corresponding to basic logic gates are set in advance, the method including: when manipulating a qubit according to a quantum logic gate, 5 splitting the quantum logic gate to obtain sub-logic gates; and searching for sub-pulses corresponding to the sub-logic gates among the basic pulses, and manipulating the qubit according to the sub-pulse. According to the solution provided by the present disclosure, basic pulses are set in advance in the method, apparatus, device and readable storage medium provided by the embodiments. When a qubit is to be manipulated, the quantum logic gate to be 0 used can be split into multiple sub-logic gates, and then sub-pulses corresponding to the sub logic gates are searched for among the basic pulses. Thus, sub-pulses that are read can be used directly to manipulate the qubit, which avoids the computing power consumed in generating pulses according to the quantum logic gate, thereby improving an operation speed of the quantum computing system. Qubit Qubit

    Simulation methods, devices, and storage media for nonlocal quantum operations

    公开(公告)号:AU2023274249A1

    公开(公告)日:2024-10-10

    申请号:AU2023274249

    申请日:2023-12-05

    Abstract: Provided is a method and apparatus for simulating nonlocal quantum operation, an electronic device, and a storage medium, relating to the field of quantum computing. The method includes: initializing a sampling coefficient set and first and second groups of quantum 5 operations, where the first group of quantum operations acts on a first quantum system, the second group of quantum operations acts on a second quantum system, and there is no communication between the first and second quantum systems; and optimizing the sampling coefficient set and the first and second groups of quantum operations by using a Semi-Definite Programming method, to obtain a quasi-probability factorization of a target nonlocal quantum 0 operation, the optimized first and second groups of quantum operations are used to construct a plurality of local quantum operations, the quasi-probability factorization is able to construct a simulation operation of the target nonlocal quantum operation. Initialize a sampling coefficient set, a first group of quantum operations and a second group of quantum operations, wherein the first group of quantum operations acts on a first quantum system, the second group of quantum operations acts on a second quantum system, and there is no communication between the first quantum system and the second quantum system Optimize the sampling coefficient set, the first group of quantum operations and the second group of quantum operations by using a Semi-Definite Programming method, to obtain a quasi-probability factorization of a target nonlocal quantum operation, wherein the optimized first group of quantum operations and the optimized second group of quantum operations are used to construct a plurality of local quantum operations, the quasi-probability factorization constructs a simulation operation of the target nonlocal quantum operation by adopting the plurality of local quantum operations and the optimized sampling coefficient set, and the quasi-probability factorization meets that a simulation error between the simulation operation and the target nonlocal quantum operation satisfies a simulation accuracy requirement min / ,Z k, Ek s.t. D( , JN)' T/, tr2 [IJEk IFakIA,V k{1 . p} -k OJEk 0V7{ ,..p

Patent Agency Ranking