Abstract:
The invention comprises systems and methods determining residual stress such as that found in interferometric modulators. In one example, a test unit can be configured to indicate residual stress in a film by interferometrically modulating light indicative of an average residual stress in two orthogonal directions of the substrate. The test unit can include a reflective membrane attached to the substrate where membrane is configured as a parallelogram with at least a portion of each side attached to the substrate, and an interferometric cavity formed between a portion of the membrane and a portion of the substrate, and where the membrane is configured to deform based on the residual stress of in the film and modulate light indicative of the amount of membrane deformation.
Abstract:
Embodiments of MEMS devices comprise a conductive movable layer spaced apart from a conductive fixed layer by a gap, and supported by rigid support structures, or rivets, overlying depressions in the conductive movable layer, or by posts underlying depressions in the conductive movable layer. In certain embodiments, portions of the rivet structures extend through the movable layer and contact underlying layers. In other embodiments, the material used to form the rigid support structures may also be used to passivate otherwise exposed electrical leads in electrical connection with the MEMS devices, protecting the electrical leads from damage or other interference.
Abstract:
The width and location of a hysteresis window of an interferometric modulator may be altered by adjusting various physical characteristics of the interferometric modulator. Thus, depending on the particular application for which the interferometric modulators are manufactured, the width and location of the hysteresis window may be altered. For example, in some applications, reducing the power required to operate an array of interferometric modulators may be an important consideration. In other applications, the speed of the interferometric modulators may be of more importance, where the speed of an interferometric modulator, as used herein, refers to the speed of actuating and relaxing the movable mirror. In other applications, the cost and ease of manufacturing may be of most importance. Systems and methods are introduced that allow selection of a width and location of a hysteresis window by adjusting various physical characteristics.
Abstract:
Described herein are systems, devices, and methods relating to packaging electronic devices, for example, microelectromechanical systems (MEMS) devices, including optical modulators such as interferometric optical modulators. The interferometric modulator disclosed herein comprises a movable mirror. Some embodiments of the disclosed movable mirror exhibit a combination of improved properties compared to known mirrors, including reduced moving mass, improved mechanical properties, and reduced etch times.
Abstract:
A modulator has a transparent substrate with a first surface. At least one interferometric modulator element resides on the first surface. At least one thin film circuit component electrically connected to the element resides on the surface. When more than one interferometric element resides on the first surface, there is at least one thin film circuit component corresponding to each element residing on the first surface.
Abstract:
A modulator has a transparent substrate with a first surface. At least one interferometric modulator element resides on the first surface. At least one thin film circuit component electrically connected to the element resides on the surface. When more than one interferometric element resides on the first surface, there is at least one thin film circuit component corresponding to each element residing on the first surface.
Abstract:
This invention provides a precursor film stack for use in the production of MEMS devices. The precursor film stack comprises a carrier substrate, a first layer formed on the carrier substrate, a second layer of an insulator material formed on the first layer, and a third layer of a sacrificial material formed on the second layer.