Abstract:
A dual-aperture zoom digital camera operable in both still and video modes. The camera includes Wide and Tele imaging sections with respective lens/sensor combinations and image signal processors and a camera controller operatively coupled to the Wide and Tele imaging sections. The Wide and Tele imaging sections provide respective image data. The controller is configured to output, in a zoom-in operation between a lower zoom factor (ZF) value and a higher ZF value, a zoom video output image that includes only Wide image data or only Tele image data, depending on whether a no-switching criterion is fulfilled or not.
Abstract:
Dual-optical module autofocus (AF) or AF plus optical image stabilization (OIS) cameras with reduced footprint and reduced mutual magnetic interference. Some AF + OIS cameras may include a single AF actuation assembly that moves two lens barrels in unison. Some AF cameras or AF + OIS cameras may have two AF actuation sub-assemblies and associated magnets for independent AF operation of each lens barrel, the magnets shared in a manner that cancels magnetic influences of one AF actuation sub-assembly on the other AF actuation sub-assembly, thereby allowing the two lens barrels to be positioned in close proximity, saving parts and fabrication costs.
Abstract:
The presently disclosed subject matter includes a mobile electronic comprising an integrated camera, comprising a Wide camera unit comprising a Wide lens unit, and a Telephoto camera unit comprising a telephoto lens unit, the telephoto lens unit and the wide lens unit having respectively TTL/EFL ratios smaller and larger than 1 and defining separate telephoto and wide optical paths.
Abstract:
Dual-aperture digital cameras with auto-focus (AF) and related methods for obtaining a focused and, optionally optically stabilized color image of an object or scene. A dual- aperture camera includes a first sub-camera having a first optics bloc and a color image sensor for providing a color image, a second sub-camera having a second optics bloc and a clear image sensor for providing a luminance image, the first and second sub-cameras having substantially the same field of view, an AF mechanism coupled mechanically at least to the first optics bloc, and a camera controller coupled to the AF mechanism and to the two image sensors and configured to control the AF mechanism, to calculate a scaling difference and a sharpness difference between the color and luminance images, the scaling and sharpness differences being due to the AF mechanism, and to process the color and luminance images into a fused color image using the calculated differences.
Abstract:
Inductance-based sensing in a digital camera in which actuation of at least one electromagnetic (EM) actuator that includes at least one stationary ferromagnetic member associated with a large air gap causes a moving ferromagnetic member mechanically coupled to an optical element to by-pass or bridge the large air gap through at least one smaller air gap. The stationary member includes at least one ferromagnetic core surrounded at least partially by a coil. An inductance value correlated with a position of the optical element may be measured using the same coil as the one used for the actuation. In some embodiments, a single EM actuator includes two coils and the actuator is driven using both coils, while a regular or a mutual inductance is measured. In some camera embodiments that include two opposite EM actuators, one actuator is used to move the optical element while the other actuator is used to measure the inductance value.
Abstract:
Electro-magnetic actuators used to provide a displacement of an optical element such as a lens carrier comprise at least one ferromagnetic frame associated with a large air gap and at least one ferromagnetic member parallel to and separated from an elongate section of a frame by a small air gap. Actuation causes a magnetic circuit that appears in the at least one frame, the at least one member and small air gaps and by-passes or bridges the large air gap. In some embodiments, the resultant magnetic force moves the at least one member and leads to the displacement of an optical element attached thereto. In some embodiments, at least one frame and at least one member are arranged to provide a center hole and are dimensioned to enable insertion of a lens carrier in the hole. In some embodiments, the displacement is for auto-focus or for optical image stabilization.
Abstract:
Dual-aperture digital cameras with auto-focus (AF) and related methods for obtaining a focused and, optionally optically stabilized color image of an object or scene. A dual- aperture camera includes a first sub-camera having a first optics bloc and a color image sensor for providing a color image, a second sub-camera having a second optics bloc and a clear image sensor for providing a luminance image, the first and second sub-cameras having substantially the same field of view, an AF mechanism coupled mechanically at least to the first optics bloc, and a camera controller coupled to the AF mechanism and to the two image sensors and configured to control the AF mechanism, to calculate a scaling difference and a sharpness difference between the color and luminance images, the scaling and sharpness differences being due to the AF mechanism, and to process the color and luminance images into a fused color image using the calculated differences.
Abstract:
Systems comprising a Wide / Ultra-Wide camera, a folded Tele camera comprising an optical path folding element and a Tele lens module, a lens actuator for moving the Tele lens module for focusing to object-lens distances between 3.0cm and 35cm with an object-to-image magnification between 1:5 and 25:1, and an application processor (AP), wherein the AP is configured to analyze image data from the UW camera to define a Tele capture strategy for a sequence of Macro images with a focal plane slightly shifted from one captured Macro image to another and to generate a new Macro image from this sequence, and wherein the focal plane and a depth of field of the new Macro image can be controlled continuously.
Abstract:
Folded Tele cameras, comprising: an optical path folding element (OPFE) for a folding a first optical path OP1 to second optical path OP2, a lens including N lens elements, the lens being divided into four lens groups arranged along a lens optical axis and marked, in order from an object side of the lens to an image side of the lens, wherein the Tele camera is configured to change a zoom factor (ZF) continuously between a minimum zoom factor marked ZFMIN corresponding to a minimal effective focal length marked EFLMIN and a maximum zoom factor marked ZFMAX.
Abstract:
Pop-out lens systems for compact digital cameras, comprising an image sensor and a lens with a field of view FOV > 60deg and having i lens elements L1-Li starting with L1 from an object side toward an image side, each lens element Li having a respective focal length fi,, the lens elements divided into two lens groups G1 and G2 separated by a big gap (BG), the lens having a pop-out total track length TTL 0.25 x TTL, wherein either G1 can move relative to G2 and to the image sensor for focusing or G1 and G2 can move together relative to the image sensor for focusing, and wherein a ratio c-TTL/ TTL