Abstract:
A medical WFOV optical-tracking-system for determining the position and orientation of a target-object. The system includes a light-emitter attached the target-object and least two light-emitters attached to a display and two Wide-Field-Of-View optical-detectors attached to the target-object, A selected one being operative to be an active Wide-Field-Of-View optical -detector which acquires an image of the two light-emitters. Each Wide-Field-Of-View optical-detector including an optical-sensor and at least two optical-receptors. The system further includes another optical-detector attached to the display, and acquires at least one image of the light-emitter attached to the target-object. A processor, determining the position arid orientation the target-object, and renders medical information, A display displays the rendered medical information at a position and orientation corresponding to the determined position and orientation of the target-object.
Abstract:
Antenna assembly for providing HF radio communication in two different operating modes. The antenna assembly includes a whip antenna and at least two antenna wire segments. The whip antenna establishes short range HF radio communication with a communication target, via ground wave or low-efficiency skywave propagation, allowing communication when the antenna assembly is in motion. The antenna wire segments are deployable to form an inverted-V antenna using the whip antenna as a center mast. The inverted-V antenna establishes short or medium range HF radio communication with a communication target, via NVIS or directional skywave propagation, allowing rapid deployment of the antenna wire segments when the antenna assembly is stationary. The antenna assembly may be mounted aboard a mobile platform, such as a vehicle.
Abstract:
A device for image gating using an array of reflective elements is provided herein. The device includes an array of reflective elements, wherein each one of the reflective elements is movable within a range of a plurality of tilt positions, wherein the array is located at an image plane of the device, wherein the array is perpendicular to an optical axis of the device. The device further includes a control unit configured to control the reflective elements such that in at least some of the tilt positions, the reflective elements reflect the radiant flux at said image plane, to one or more projection planes. A gradual rotation of the reflective elements along the plurality of tilt positions result in a gradual increase or decrease in the intensity of the image reflected from the array of reflective elements while maintaining the image integrity.
Abstract:
Antenna assembly for providing HF radio communication in two different operating modes. The antenna assembly includes a whip antenna and at least two antenna wire segments. The whip antenna establishes short range HF radio communication with a communication target, via ground wave or low-efficiency skywave propagation, allowing communication when the antenna assembly is in motion. The antenna wire segments are deployable to form an inverted-V antenna using the whip antenna as a center mast. The inverted-V antenna establishes short or medium range HF radio communication with a communication target, via NVIS or directional skywave propagation, allowing rapid deployment of the antenna wire segments when the antenna assembly is stationary. The antenna assembly may be mounted aboard a mobile platform, such as a vehicle.
Abstract:
Method for dynamically limiting the inclinations of monoblock flight control surfaces (FCS) in an aircraft. Dynamic limitation of the FCS is activated if a stall susceptibility condition is detected in the current aircraft environment. The real-time calibrated airspeed of the aircraft, real-time angle of attack (AOA) of the aircraft, and real-time sideslip angle (AOS) of the aircraft are obtained. The aircraft parameters may be obtained via estimation if the measured values are deemed unsuitable. The real-time local AOA and AOS of the FCS are calculated based on the obtained aircraft parameters. The inclination of each of the FCS relative to the critical values is dynamically limited according to the calculated real-time local AOA and AOS of the FCS. The aircraft may be an unmanned aerial vehicle (UAV) and/or a V-tail aircraft. The stall susceptibility condition may include icy conditions.
Abstract:
A footwear seismic communication unit is provided herein. The unit includes footwear attachable to a foot or feet of a user, including at least one sole portion for placing on a ground and at least one seismic transducer device located within said at least one sole. The unit further includes a processing module, a transmitting interface module, and a receiving interface module.
Abstract:
System for detecting objects protruding from the surface of a body of water in a marine environment under low illumination conditions, the system comprising a gated light source, generating light pulses toward the body of water illuminating substantially an entire field of view, a gated camera, sensitive at least to wavelengths of the light generated by the gated light source, the gated camera receiving light reflected from at least one object, within the field of view, protruding from the surface of the body of water and acquiring a gated image of the reflected light, and a processor coupled with the gated light source and with the gated camera, the processor gating the gated camera to be set 'OFF' for at least the duration of time it takes the gated light source to produce a light pulse in its substantial entirety in addition to the time it takes the end of the light pulse to complete traversing a determined distance from the system and back to the gated camera, the processor further setting, for each pulse, the gated camera to be 'ON' for an 'ON' time duration until the light pulse, reflecting back from the object, is received by the gated camera.
Abstract:
A method of visually guiding a pilot flying an aircraft using one or more conformal symbols whose position is dynamically updated throughout the guidance is provided herein. The method includes the following stages: determining a desired flight route of an aircraft, based on a user-selected maneuver; presenting to a pilot, on a display, at least one 3D visual symbol that is: (i) earth-space stabilized, and (ii) positioned along a future location along the desired route; computing an updated desired route based on repeatedly updated aircraft flight data that include at least one of: location, speed, and spatial angle, of the aircraft; and repeating the presenting of the at least one 3D visual symbol with its updated location along the updated desired route.
Abstract:
An ammunition magazine (20) contains an ammunition belt (34) of linked ammunition cartridges (36) to be fed into a machine gun (12), the magazine (20) including a front opening (26 '), enabling a leading end of the ammunition belt (34) to be accessible for feeding the machine gun (12) and for linking with a trailing end of another ammunition belt (34), and a rear opening (26"), enabling a trailing end of the ammunition belt (34) to be accessible for linking with a leading end of another ammunition belt (34). An arrangement of consecutive and adjacent ammunition magazines (20) allows movement of an ammunition belt (34) from the distal magazine (20b) into the proximal magazine (20a) towards the machine gun (12) during operation, enabling continuous feeding of ammunition belts (34) into the machine gun. An ammunition loading system for conveying ammunition between a magazine platform and a hull region, including a lifting mechanism (24) to lift an ammunition magazine into the magazine platform from the hull region.
Abstract:
A system and a method of generating a three-dimensional terrain model using one-dimensional interferometry of a rotating radar unit is provided herein. Height information is evaluated from phase differences between two echoes by applying a Kalman filter in relation to a phase confidence map that is generated from phase forward projections relating to formerly analyzed phase data. The radar system starts from a flat earth model and gathers height information of the actual terrain as the platform approaches it. Height ambiguities are corrected by removing redundant 2 π multiples from the unwrapped phase difference between the echoes.