Abstract:
The invention is directed to a metallocene catalyst system and a process for preparing the system. The metallocene catalyst system comprises a support and metallocene bound substantially throughout the support. The selection of certain supports facilitates the production of metallocene catalyst systems having increased catalytic activity than previously recognized.
Abstract:
The present invention relates to a process for making beads of expandable polystyrene by utilizing as an additive in the suspension polymerization process, a small amount of a low-molecular-weight polyethylene having a molecular weight of around 2000.
Abstract:
Disclosed is a polymeric composition containing at least 98 wt. % of a random ethylene polypropylene copolymer, 0 wt. % to 1.0 wt. % of an acid neutralizer, and 0.005 wt. % to 1.0 wt. % of a gamma nucleator (a γ-nucleator). The random ethylene polypropylene copolymer can include 0.5 wt. % to 12 wt. % of ethylene units and 88 wt. % to 99.5 wt. % of propylene units based on the total weight of the copolymer. The polymeric composition can have a haze value of less than 60% (as measured in accordance with ASTM D-1003, at a thickness of about 40 mils) and a crystallization temperature of more than 100° C. as measured by Differential Scanning Calorimetry. Articles containing the polymeric composition are also disclosed.
Abstract:
A method of making foamed styrenic copolymer comprising reacting the styrenic copolymer with an ionomer to form a composition; and contacting a blowing agent with the composition to form the foamed styrenic polymer. An article formed from a composition comprising a styrenic copolymer, an ionomer and a blowing agent.
Abstract:
A polymer having a hydrophobic polymer chain derived from monomers of farnesene and other optional monomers, such as dienes and vinyl aromatics. The polymer also includes one or more terminal functional groups, such as an amino group, a glycidyl group, a carboxylic acid group, a (meth)acrylate group, a silane group, an isocyanate group, an acetoacetate group, a phenolic group, and a hydroxyl group. Functional groups, such as carboxylic acids, may also be grafted along the hydrophobic polymer chain. The polymer may be incorporated in curable compositions that optionally include one or more polymer resins having similar functional groups. Methods for preparing the curable polymer compositions are also provided. The curable or cured form of the polymer composition may be used in various products, such as a sealant, a coating, a caulk, an electric potting compound, a membrane, a sponge, a foam, an adhesive, or a propellant binder.
Abstract:
A multi-stage dehydrogenation process including contacting, in a first stage, a feed stream comprising a hydrocarbon and steam with a dehydrogenation catalyst under dehydrogenation conditions to yield a first stage effluent, heating the first stage effluent, and contacting, in a second stage, the heated first stage effluent with a dehydrogenation catalyst under dehydrogenation conditions to yield a second stage effluent comprising a dehydrogenation product, wherein the first stage includes a first reactor and a second reactor arranged in parallel, and wherein the second stage includes a third reactor connected in series with the first reactor and the second reactor. A multi-stage dehydrogenation system for carrying out dehydrogenation is also provided.
Abstract:
A polymer having a hydrophobic polymer chain derived from monomers of farnesene and other optional monomers, such as dienes and vinyl aromatics. The polymer also includes one or more terminal functional groups, such as an amino group, a glycidyl group, a carboxylic acid group, a (meth)acrylate group, a silane group, an isocyanate group, an acetoacetate group, a phenolic group, and a hydroxyl group. Functional groups, such as carboxylic acids, may also be grafted along the hydrophobic polymer chain. The polymer may be incorporated in curable compositions that optionally include one or more polymer resins having similar functional groups. Methods for preparing the curable polymer compositions are also provided. The curable or cured form of the polymer composition may be used in various products, such as a sealant, a coating, a caulk, an electric potting compound, a membrane, a sponge, a foam, an adhesive, or a propellant binder.
Abstract:
Thin polymer sheets and used thereof are described. A polymer sheet can include greater than 90 wt. % of a single-site catalyzed polyolefin (PO) and have a thickness of at least 0.0254 cm. The sheet can be used to produce molded articles.
Abstract:
A polymer composition of polypropylene copolymer and 1 to 50% by weight of hard resin. The polypropylene copolymer is either an impact copolymer or a random copolymer. The polymer composition can be used to make injection stretch blow molded articles having improved top load strength.
Abstract:
Molded articles are prepared from propylene-ethylene copolymers and exhibiting improved clarity and strength properties. Articles prepared include bottles and other thin-walled articles. The articles are prepared using an isotactic propylene-ethylene random copolymer resin having an ethylene content of from about 0.5 to about 3 percent by total weight of copolymer, with a xylene solubles content of less than about 1.5 percent. The injection molded article may exhibit less than about 20 percent haze, as determined by ASTM D1003, at a thickness of about 0.08 inch (2.03 mm). Articles may also be prepared from similar copolymers having an ethylene content greater than about 3 percent by total weight of copolymer, with a xylene solubles content of less than about 4 percent by total weight of copolymer. These articles may exhibit less than about 13 percent haze, as determined by ASTM D1003, at a thickness of about 0.08 inch (2.03 mm).