Abstract:
Apparatus features a controller having a signal processor or processing module configured to: receive signaling containing information about a power profile that is specific to a pumping system having N parallel pumps and based upon data related to one or more of pumping system power, losses and wire-to-water efficiency in real time for the N parallel pumps configured to run in the pumping system to generate a head H and a flow F with an efficiency E, and at least one calculation/prediction of at least one corresponding efficiency of at least one combination/number of N−1 and/or N+1 parallel pumps to achieve a corresponding/same head H and flow F with a corresponding efficiency; and determine corresponding signaling containing information to control the operation of the pumping system that depends on a comparison of the efficiency E and the at least one corresponding efficiency, based upon the signaling received, including staging/destaging a pump to or from the pumping system.
Abstract:
Apparatus is provided featuring a signal processor or processing module configured to receive signaling containing information about a pump no flow idle (NFI) state when the pump is running at a pump idle speed; and determine corresponding signaling containing information about whether the pump should remain in a no flow shutdown (NFSD) state or the pump NFI state, based upon the signaling received. The signal processor or processing module is configured to provide the corresponding signaling containing information about whether the pump should remain in the NFSD state or the NFI state.
Abstract:
A spiral heat exchanger features: a cold fluid inlet manifold, a hot fluid inlet manifold and at least one spiral fluid pathway. The cold fluid inlet manifold receives cold fluid and provide cold inlet manifold fluid. The hot fluid inlet manifold receives hot fluid and provide hot inlet manifold fluid. The at least one spiral fluid pathway includes cold spiral pathways configured to receive the cold inlet manifold fluid and provide cold spiral fluid pathway fluid, and hot spiral pathways configured to receive the hot inlet manifold fluid and provide hot spiral fluid pathway fluid. The cold spiral pathways and the hot spiral pathways are configured in relation to one another to exchange heat between the cold spiral pathway fluid and the hot spiral pathway fluid so that the hot spiral fluid pathway fluid warms the cold spiral fluid pathway fluid, and vice versa.
Abstract:
A double suction impeller features an impeller main body and an impeller suction eye. The impeller main body may include a suction eye adapter coupling member. The impeller suction eye may include a removable suction eye adapter having a corresponding suction eye adapter coupling member configured to couple detachably to the suction eye adapter coupling member of the impeller main body, whereby the removable suction eye adapter can be removed and replaced when wear and erosion occurs and can be a separate cast and/or machined piece.
Abstract:
The present invention allows for a combination valve in a hydronic HVAC system that functions as an isolation valve; a check valve; and as a device for measuring fluid parameters, such as flow rate, pressure, and/or temperature, and also allows for the isolation valve to be configured in the field to be mounted either in a straight 180° or an angled 90° orientation, as well as at an intermediate angle. The new combination of isolation valve, check valve, with embedded sensors for flow rate, pressure, and/or temperature measurement provides a more compact product envelope that achieves space savings, e.g., by eliminating the need for separate components in an HVAC system, such as separate isolation valves, check valves, flow meters, pressure gages, and/or thermometers.
Abstract:
The present invention provides apparatus that features a signal processor or processing module configured to receive signaling containing information about an adaptive or self-calibrating set point control curve and a varying equivalent system characteristic curve based at least partly on an instant pump pressure and a flow rate using an adaptive moving average filter, and equivalent hydronic system characteristics associated with the instant pump pressure and the flow rate to corresponding motor power and speed reconstructed and remapped using a discrete numerical approach; and determine an adaptive pressure set point, based at least partly on the signaling received.
Abstract:
A LWCO remote monitoring and diagnosing system or device features a signal processor configured to: receive signaling containing information for running a remote low water cut off (LWCO) mobile application, and also containing information about historical data related to a LWCO circuit that monitors and controls a burner of a boiler that opens and closes to provide water to the boiler depending on the water level in the boiler; and determine corresponding signaling containing information about the historical data requested based upon the signaling received.
Abstract:
A discrete valve flow rate converter is provided to obtain a system flow through a valve in a dynamic hydronic pumping system, e.g., based on signaling containing information about the valve's differential pressure and the valve's hydronic characteristics calibration data. The discrete valve flow rate converter resolves the valve system flow rate directly and accurately with the valve's open position and the corresponding valve differential pressure signals associated therewith. The discrete valve flow rate converter may be applied to all kinds of valves as long as their open position and differential pressure associated with is available, e.g., including implementations for control valve applications, e.g., where the valve open position is controlled automatically and accurately, as well as implementations either for pumping system pressure controls with the flow rate known, such as adaptive hydronic system pressure controls, or as an alternative to sensorless pump monitoring and control.
Abstract:
A signal processor receives signaling containing information about flow rates from sensorless converters in zone circulators in heating/cooling zones controlled by temperature sensors in a hydronic heating system in order to derive an adaptive pressure set point to meet the flow rates requested by the heating/cooling zones using an adaptive system and flow control curve equation, the signaling containing information about total flow rates requested by the zone circulators; determines desired pump speeds for the zone circulators to meet temperature requirements in heat zones; provides corresponding signaling containing information about the desired pump speeds; and/or determines the adaptive pump control curve equation based upon an adaptive system curve and as a moving maximum system flow rate depending on an adaptive pressure set point, a system flow rate requested by temperature loads, a minimum pressure at no flow, a control curve setting parameter, and an adaptive moving maximum flow and pressure.
Abstract:
The present invention provides apparatus featuring a signal processor or processing module that may be configured at least to: receive signaling containing information about calibrated motor speed and power data for a hydronic pumping system; and determine system pumping flow rate and pressure associated with an equivalent hydronic system characteristic variable, based at least partly on the signaling received. The signal processor or processing module may be configured to provide corresponding signaling containing information about the system pumping flow rate and pressure determined. The corresponding signaling may contain information used to control the hydronic pumping system.