Abstract:
Die Erfindung betrifft neue Nukleinsäuremoleküle, deren Verwendung zur Konstruktion von gentechnisch verbesserten Mikroorganismen und Verfahren zur Herstellung von Feinchemikalien, insbesondere Aminosäuren mit Hilfe dieser gentechnisch verbesserten Mikroorganismen.
Abstract:
The present invention is directed to a method utilizing a microorganism with reduced isocitrate dehydrogenase activity for the production of methionine.
Abstract:
The present invention relates to nulceotide sequences encoding enzymatically active cobalamin-methionine synthase and functional fragments thereof being modified in comparison to the respective wild-type enzyme such that said enzymes show reduced product inhibition by methionine. The present invention also relates to polypeptides being encoded by such nucleotide sequences and host cells comprising such nucleotide sequences. Furthermore, the present invention relates to methods for producing methionine in host organisms by making use of suchnucleotide sequences.
Abstract:
The present invention relates to a method of increasing the amount of at least one polypeptide in the host cell by expressing a modified nucleotide sequence encoding for a polypeptide in a host cell with said modified.nucleotide sequence being derived from a different non-modified nucleotide sequence encoding for a polypeptide of identical amino acid sequence such that the codon usage of the modified nucleotide sequence is adjusted to the codon usage of abundant proteins in the host cell.
Abstract:
The present invention is directed to a method of reducing the amount of at least one polypeptide in a host cell by expressing a nucleotide sequence encoding for the polypeptide in the host cell wherein the nucleotide sequence uses codons that are rarely used according to the codon usage of the host organism. Furthermore, the present invention relates to nucleotide sequences encoding for a polypeptide with a codon usage that has been adjusted to use codons that are only rarely used according to the codon usage of the host organism. The present invention further relates to the use of such sequences and methods for producing fine chemicals such as amino acids, sugars, lipids, oils, carbohydrates, vitamins, cofactors etc.
Abstract:
The present invention relates to microorganisms and processes for the efficient preparation of L-amino acids such as L-methionine. In particular, the present invention relates to microorganisms and processes in which the formation and/or accumulation of homolanthionine in the methionine pathway is reduced and/or prevented.
Abstract:
This invention relates to methionine producing recombinant microorganisms. Specifically, this invention relates to recombinant strains of Corynebacterium that produce increased levels of methionine compared to their wild-type counterparts and further to methods of generating such microorganisms.
Abstract:
The present invention pertains to improved microorganisms and methods for the production of methionine and other sulfur containing fine chemicals using the metl gene from Bacillus subtilis or a gene related to metI . In some embodiments of the present invention, the metI gene or another gene is integrated in a fashion that allows for co-production of a water soluble compound such as methionine or other amino acid and a caortenoid compound.
Abstract:
The invention relates to the use of nucleic acid sequences for regulating gene transcription and expression, said novel promoters and expression units, methods for modifying or inducing the transcription rate and/or expression rate of genes, expression cassettes containing said expression units, genetically modified microorganisms with a modified or induced transcription rate and/or expression rate, and methods for producing biosynthetic products by cultivating the genetically modified microorganisms.
Abstract:
The present invention features methods of increasing the production of a fine chemical, e.g., lysine from a microorganism, e.g., Corynebacterium by way of deregulating an enzyme encoding gene, i, e., glycerol kinase. In a preferred embodiment, the invention provides methods of increasing the production of lysine in Corynebacterium glutamicum by way of increasing the expression of glycerol kinase activity. The invention also provides a novel process for the production of lysine by way of regulating carbon flux towards oxaloacetate (OAA). In a preferred embodiment, the invention provides methods for the production of lysine by way of utilizing fructose or sucrose as a carbon source.