Abstract:
A display panel and method of manufacture are described. In an embodiment, a display substrate includes a pixel area and a non-pixel area. An array of subpixels and corresponding array of bottom electrodes are in the pixel area. An array of micro LED devices are bonded to the array of bottom electrodes. One or more top electrode layers are formed in electrical contact with the array of micro LED devices. In one embodiment a redundant pair of micro LED devices are bonded to the array of bottom electrodes. In one embodiment, the array of micro LED devices are imaged to detect irregularities.
Abstract:
A display panel and a method of forming a display panel are described. The display panel may include a thin film transistor substrate including a pixel area and a non-pixel area. The pixel area includes an array of bank openings and an array of bottom electrodes within the array of bank openings. A ground line is located in the non-pixel area and an array of ground tie lines run between the bank openings in the pixel area and are electrically connected to the ground line in the non-pixel area.
Abstract:
A method of fabricating and transferring a micro device and an array of micro devices to a receiving substrate are described. In an embodiment, an electrically insulating layer is utilized as an etch stop layer during etching of a p-n diode layer to form a plurality of micro p-n diodes. In an embodiment, an electrically conductive intermediate bonding layer is utilized during the formation and transfer of the micro devices to the receiving substrate.
Abstract:
A compliant bipolar micro device transfer head array and method of forming a compliant bipolar micro device transfer array from an SOI substrate are described. In an embodiment, a compliant bipolar micro device transfer head array includes a base substrate and a patterned silicon layer over the base substrate. The patterned silicon layer may include first and second silicon interconnects, and first and second arrays of silicon electrodes electrically connected with the first and second silicon interconnects and deflectable into one or more cavities between the base substrate and the silicon electrodes.
Abstract:
A method and structure for stabilizing an array of micro devices is disclosed. The array of micro devices is formed on an array of stabilization posts formed from a thermoset material. Each micro device includes a bottom surface that is wider than a corresponding stabilization post directly underneath the bottom surface.
Abstract:
Systems and methods for aligning a transfer head assembly with a substrate are disclosed. In an embodiment a pivot mount is used for generating a feedback signal in a closed-loop motion control system. In an embodiment, the pivot mount includes primary spring arms and secondary spring arms extending between a pivot platform and a base of the pivot mount. The secondary spring arms are characterized by a lower stiffness than the primary spring arms, and strain sensing elements are located along the secondary spring arms.
Abstract:
Systems and methods for aligning a transfer head assembly with a substrate are disclosed. In an embodiment a pivot mount is used for generating a feedback signal in a closed-loop motion control system. In an embodiment, the pivot mount includes a plurality of spring arms, with each spring arm including a switch-back along an axial length of the spring arm such that a pair of first and second lengths of the spring arm are immediately adjacent the switch-back and are parallel to each other. A first strain sensing element is located at the first length, and a second strain sensing element is located at the second length.
Abstract:
Reflective bank structures for light emitting devices are described. The reflective bank structure may include a substrate, an insulating layer on the substrate, and an array of bank openings in the insulating layer with each bank opening including a bottom surface and sidewalls. A reflective layer spans sidewalls of each of the bank openings in the insulating layer.
Abstract:
A method and structure for receiving a micro device on a receiving substrate are disclosed. A micro device such as a micro LED device is punched-through a passivation layer covering a conductive layer on the receiving substrate, and the passivation layer is hardened. In an embodiment the micro LED device is punched-through a B-staged thermoset material. In an embodiment the micro LED device is punched-through a thermoplastic material.
Abstract:
A method of transferring a micro device and an array of micro devices are disclosed. A carrier substrate carrying a micro device connected to a bonding layer is heated to a temperature below a liquidus temperature of the bonding layer, and a transfer head is heated to a temperature above the liquidus temperature of the bonding layer. Upon contacting the micro device with the transfer head, the heat from the transfer head transfers into the bonding layer to at least partially melt the bonding layer. A voltage applied to the transfer head creates a grip force which picks up the micro device from the carrier substrate.