Abstract:
A memory device (100) includes a semiconductor wire including a source region (132), a drain region (134), and a channel region (130) between the source region (132) and the drain region (134). A gate structure that overlies the channel region includes a memristive portion (120) and a conductive portion (110) overlying the memristive portion (120).
Abstract:
Various embodiments of the present invention are related to microresonator systems that can be used as a laser, a modulator, and a photodetector and to methods for fabricating the microresonator systems. In one embodiment, a microresonator system (100) comprises a substrate (106) having a top surface layer (104), at least one waveguide (114,116) embedded within the substrate (106), and a microdisk (102) having a top layer (118), an intermediate layer (122), a bottom layer (120), current isolation region (128), and a peripheral annular region (124,126). The bottom layer (120) of the microdisk (102) is in electrical communication with the top surface layer (104) of the substrate (106) and is positioned so that at least a portion of the peripheral annular region (124,126) is located above the at least one waveguide (114,116). The current isolation region (128) is configured to occupy at least a portion of a central region of the microdisk and has a relatively lower refractive index and relatively larger bandgap than the peripheral annular region.
Abstract:
An optical apparatus (100, 200, 300, 400, 500, 600, 700) includes a waveguide (120) configured to propagate optical energy; an electrical contact surface (105, 401); and a semiconductor electrical interconnect (115, 215, 215-1, 215-2, 215-3, 315, 315-1, 315-2, 315-3, 315-4, 315-5, 315-6, 315-7, 410, 515, 615, 625, 715) extending from a first surface of the optical waveguide (120) to electrical communication with the electrical contact surface (105, 401). The semiconductor electrical interconnect (115, 215, 215-1, 215-2, 215-3, 315, 315-1, 315-2, 315-3, 315-4, 315-5, 315-6, 315-7, 410, 515, 615, 625, 715) comprises a geometry configured to substantially confine the optical energy to the waveguide (120).
Abstract:
Various embodiments of the present invention are related to microresonator systems and to methods of fabricating the microresonator systems. In one embodiment, a microresonator system (200) comprises a substrate (206) having a top surface layer (204) and at least one waveguide (214,216) embedded in the substrate and positioned adjacent to the top surface layer of the substrate. The microresonator system also includes a microresonator (202,402) having a top layer (218), an intermediate layer (222), a bottom layer (220), a peripheral region, and a peripheral coating (224). The bottom layer (220) of the microresonator is attached to and in electrical communication with the top surface layer (204) of the substrate. The microresonator is positioned so that at least a portion of the peripheral region is located above the at least one waveguide (214, 216). The peripheral coating (224) covers at least a portion of the peripheral surface and has a relatively lower index of refraction than the top, intermediate, and bottom layers of the microresonator.
Abstract:
Various aspects of the prsent invention are directed to electric-field-enhancement structures (100) and detection apparatuses (600, 700, 800) that employ such electric-field-enhancement structures. In one aspect of the present invention, an electric-field-enhancement structure (100) includes a substrate (102) having a surface (104). The substrate (102) is capable of supporting a planar mode (114) having a planar-mode frequency. A plurality of nanofeatures (106) is associated with the surface (104), and each of nanofeatures (106) exhibits a localized-surface-plasmon mode (116) having a localized-surface-plasmon frequency approximately equal to the planar-mode frequency.
Abstract:
One embodiment in accordance with the invention is a system (500) that can include a first wafer (104) and a second wafer (102). The first wafer and the second wafer can be bonded together by a wafer bonding process that forms a gap (128) between the first wafer and the second wafer. The gap can be configured for receiving a heat extracting material (530).
Abstract:
An apparatus and related methods for facilitating surface-enhanced Raman spectroscopy (SERS) is described. The apparatus comproses a SERS-active structure (102) near which a plurality of analyte molecules (A) are disposed and an actuation device (112) in actuable communication with the SERS-active structure (102) to deform the SERS-active structure (102) while the analyte molecules (A) are disposed therenear. The deformation of the SERS-active structure (102) varies an intensityof radiation Raman-scattered from the analyte molecules (A).
Abstract:
A device comprising a single photon generator (201) and a waveguide (203), wherein a single photon generated by the single photon generator is coupled to the waveguide (203).
Abstract:
There is disclosed an improved method of manufacturing of an optical device (40), particularly semiconductor optoelectronic devices such as laser diodes, optical modulators, optical amplifiers, optical switches, and optical detectors. The invention provides a method of manufacturing optical device (40), a device body portion (15) from which the device (40) is to be made including a Quantum well (QW) structure (30), the method including the step of: processing the device body portion (15) so as to create extended defects at least in a portion (53) of the device portion (5). Each extended defect is a structural defect comprising a plurality of adjacent "point" defects.
Abstract:
There is disclosed an improved method of manufacturing an optical device using an impurity induced Quantum Well Intermixing (QWI) process. Reported QWI methods, and particularly Impurity Free Vacancy Diffusion (IFVD) methods, suffer from a number of disadvantages, eg the temperature at which Gallium Arsenide (GaAs) out-diffuses from the semiconductor material to the Silica (SiO 2 ) film. Accordingly, the present invention provides a method of manufacturing an optical device, a device body portion (5a) from which the device is to be made including at least one Quantum Well (QW) (10a), the method including the steps of: causing an impurity material to intermix with the at least one Quantum Well (QW) (10a), wherein the impurity material at least includes Copper (Cu).