Abstract:
An electronic device disclosed herein includes a mirror controller configured to generate a drive control signal, with a drive circuit configured to generate a drive signal for a movable mirror based upon the drive control signal. A sensing circuit is configured to sense the drive signal. The mirror controller is further configured to adjust the drive control signal as a function of the sensed drive signal.
Abstract:
A color calibration device for a laser scanning apparatus includes a compensation unit configured to electronically compensate for positional errors of the three-color laser source. The compensation unit includes an emitted light detector configured to measure a power of an emitted light beam. A calibration unit coupled to the emitted light detector has a controller configured to generate a quantity correction value for the three-color laser source. A laser source control element is configured to generate a control quantity for the three-color laser source, based on the quantity correction value. A dominant color detector is configured to detect any dominant color in the light beam being projected and actuate the controller for the dominant color.
Abstract:
The present disclosure provides a system and method for controlling operation of a resonance MEMS mirror. The system and method includes activating either an in-plane or staggered MEMS mirror via sets of activation pulses applied to the MEMS mirror, detecting current at the MEMS mirror, generating a window for detecting a change in a direction of the current at the MEMS mirror, and terminating the window and the activation pulse if a change in the current direction is detected during the window. In some embodiments, two sets of activation pulses are applied to the MEMS mirror.
Abstract:
Disclosed herein is a circuit for determining failure of a movable MEMS mirror. The circuit includes an integrator receiving an opening angle signal representing an opening angle of the movable MEMS mirror, and a differentiator receiving the opening angle signal. A summing circuit is configured to sum the integrator output and the differentiator output. A comparison circuit is configured to determine whether the sum of the integrator output and differentiator output is not within a threshold window. An indicator circuit is configured to generate an indicator signal indicating that the movable MEMS mirror has failed based on the comparison circuit indicating that the sum of the integrator output and differentiator output is not within the threshold window.
Abstract:
One embodiment discloses a method for soldering a cap for an integrated electronic device to a support layer, including the steps of: providing a support layer; providing a cap including a core of a first material and a coating layer of a second material, the first and second material being respectively wettable and non-wettable with respect to a solder, the coating layer being arranged so as to expose a surface of the core; coupling the cap with the support layer; and soldering the surface of the core to the support layer, by means of the solder.
Abstract:
A method for testing a strip of MEMS devices, the MEMS devices including at least a respective die of semiconductor material coupled to an internal surface of a common substrate and covered by a protection material; the method envisages: detecting electrical values generated by the MEMS devices in response to at least a testing stimulus; and, before the step of detecting, at least partially separating contiguous MEMS devices in the strip. The step of separating includes defining a separation trench between the contiguous MEMS devices, the separation trench extending through the whole thickness of the protection material and through a surface portion of the substrate, starting from the internal surface of the substrate.
Abstract:
A CMOS image sensor and method for making such a sensor includes a coating over the photosensing parts, wherein the coating performs a dual function. In fabrication, the coating prevents the formation of silicide, which is not optically opaque, on the photosensing parts. When the CMOS sensor is in use, the coating helps to couple light onto the photosensing parts, and therefore acts as an anti-reflective layer. The method of fabrication uses a self-aligning technique, which ensures pixel-to-pixel uniformity.
Abstract:
An image sensor has an array of pixels read by column circuits to provide reset and read samples on a pair of sample capacitors. To alleviate the effects of parasitic capacitance in the region of the sample capacitors, a modified timing arrangement is used. Both sample switches are operated simultaneously to pre-charge both sample capacitors with a pixel signal value. One sample switch is operated after reset to apply a reset value to one of the pre-charged sample capacitors.
Abstract:
A solid state image sensor has an array of pixels in which each column has a reset voltage line and a read line. The sensor is reset and read a row at a time, with reset-related values held in a frame buffer for subsequent subtraction from read values. Reset-related values are derived in each column by sampling the voltage during reset on one capacitor and the voltage on release of reset on a second capacitor, and differencing these values to provide an output for the frame buffer. This provides a reduction in the size of frame buffer which would otherwise be required.
Abstract:
A CMOS output buffer uses feedback from a ground node to reduce ground bounce by utilizing a tolerable ground bounce limit, making it less sensitive to operating conditions and processing parameters. An input to the NMOS device of the output buffer is provided by the output of a control element which receives a first input from a pre-driver and a second input (i.e., the feedback) from the ground node.