Abstract:
In the method of the invention said services include Information Technology, or IT, and scheduled services and said converged networks implement Policy Control and Charging Rules Function, or PCRF and advanced Path Computation Element, or PCE+ in a 3rd Generation Partnership Project architecture.It is characterised in that it comprises performing a communication procedure between a PCRF module and a PCE+ module by means of an adaptor entity in order to provide, said PCE+ module, information to said PCRF module, said PCRF module using said information to at least allocate network and/or IT resources demanded when provisioning said services.
Abstract:
In the method of the invention, said CDN comprises a plurality of server nodes, said content acquisition process is performed when an end-user requests uploading content and said method is characterised in that it comprises: —selecting, a central entity receiving an uploading request from said end-user, at least one of said plurality of server nodes according to location of said end user, current status of said plurality of server nodes, CPU requirements of said plurality of server nodes and/or any other monitoring parameter of said CDN; —directing, said central entity, said uploading request from said end-user to said at least one of said plurality of server nodes; and—uploading, said end-user, said content to said at least one of said plurality of server nodes upon acceptance of said uploading request by said at least one of said plurality of server nodes. The system of the invention is arranged to implement the method of the invention.
Abstract:
In the method, a user device detects interferences a single dominant interferer of a neighbour base station, said user device provided with at least two antennas and said user device connected to a main base station, said main base station introducing a pattern of transmission gaps for certain Resource Elements in the Resource Element mapping function by switching off the transmission, being said certain Resource Elements in the Resource Element mapping function introduced for the PDSCH complex symbols.
Abstract:
The method updating the status of a network by means of a protocol of the control plane of said network and in response to a path request from at least a path computation client (PCC) pre-reserving during a reserved period of time (Tres), by at least one path computation element (PCE), a plurality of network resources in at least one traffic engineering database (TED) of the at least one PCE. The method dynamically modifying by a timer policy said reserved period of time (Tres) by at least using information data regarding the delay of said control plane.The system of the invention is adapted to implement the method of the invention.
Abstract:
It is provided a method for transferring and managing data packages between a first portable secure element, SE, server implemented in a portable device (100, 200) and a second portable SE server implemented in an embedded UICC, eUICC (120, 240), comprised in a user's device (110, 230) which is local to the portable device (100, 200), the first and second portable SE severs comprising Subscription Manager, SM, functionalities, the method comprises the first and the second portable SE servers establishing off-line communication using local data transport protocols in a secured mode, the first or the second portable SE server implementing first transfer functionalities (140) for performing secure transfer of the data packages and the first or the second portable SE server implementing second transfer functionalities (140) for performing end-to-end securing of the data packages after the secure transfer of the data packages.
Abstract:
It is provided a method for transferring and managing data packages between a first portable secure element, SE, server implemented in a portable device (100, 200) and a second portable SE server implemented in an embedded UICC, eUICC (120, 240), comprised in a user's device (110, 230) which is local to the portable device (100, 200), the first and second portable SE severs comprising Subscription Manager, SM, functionalities, the method comprises the first and the second portable SE servers establishing off-line communication using local data transport protocols in a secured mode, the first or the second portable SE server implementing first transfer functionalities (140) for performing secure transfer of the data packages and the first or the second portable SE server implementing second transfer functionalities (140) for performing end-to-end securing of the data packages after the secure transfer of the data packages.
Abstract:
A system and method for optimizing event prediction in data systems, wherein at least one source (100) comprises: a data collector periodically collecting (101) real data values (300) to generate a stream of data modeled as a time series; a generator (110) of prediction models (M1, M2, M3, . . . , Mx) to which the collected values from the data collector are input; a first forecast module (120) receiving (102) one of the generated prediction models (M1, M2, M3, . . . , Mx) for generating a predicted value (310) and computing a committed error (320) by comparing the predicted value (310) with the real data value (300); and wherein the source (100) sends (105) the committed error (320) within the time series to the destination (200) only if the committed error (320) exceeds a threshold and wherein the destination (200) comprises: a second forecast module (210) receiving (204) the same prediction model (M1, M2, M3, . . . , Mx) from the generator (110) through a communication channel (103); a correction module (220) for obtaining (203) the real data value by the generated prediction model (M1, M2, M3, . . . , Mx) and applying the committed error (320) if received (202) from the source (100).
Abstract:
The method comprising, in a network based on a chain of individual Service Functions, SFs, that are composed to implement Network Services, NSs: assigning, at an ingress node of a network architecture, to at least one data packet received by said ingress node from the network, a unique cryptographic tag; processing said assigned unique cryptographic tag using a cryptographic function specific to each Service Function, SF; and verifying, at a given point of the network architecture, said processed unique cryptographic tag by applying a cryptographic verification function composed by the inverse functions of the cryptographic functions associated to the SFs traversed by the at least one data packet.
Abstract:
The distribution network comprising a plurality of caching nodes and wherein the web content had been statically identified as an uncacheable content and originated on an origin-server and wherein the method establishes a time to live, TTL, period value to said uncacheable content based on users requests and responds to said users requests by sending to at least to one CDN user said uncacheable content within said TTL period value. Each one of said plurality of caching nodes in said distribution network including a content caching manager and a pseudo-dynamic content TTL predictor and performing the following steps: a) contacting each one of said plurality of nodes with a centralized repository, in order to download the configuration file of a plurality of said CDN users. b) identifying, said content caching manager of each caching node, the uncacheable content as a pseudo-dynamic content; c) predicting, a pseudo-dynamic content TTL predictor of said caching node, said TTL period value in which the uncacheable content will not be modified; and d) caching, each one of said plurality of nodes, the uncacheable content during said predicted TTL period value. The system of the invention is arranged to implement the method of the invention.
Abstract:
Method to perform joint scheduling in the downlink or in the uplink of a centralized OFDM radio access network for a plurality of users considering time, frequency and space domains, scheduler device thereof and computer program products. The method to be applied in the downlink or in the uplink of a centralized radio access network based on OFDM, whereby a set of remote radio heads of a set of remote units are connected to a central unit, that performs all (or part of) the radio-related processing tasks, wherein the scheduling exploit CoMP, NOMA and RF conditions and resource blanking techniques.