Abstract:
본 발명은 친환경 난연성 바이오 복합재료를 제조하는 방법에 관한 것으로서, 1) 세라믹 시트 상에 절단된 천연섬유 및 고분자 분말을 분산시키는 단계; 2) 상기 천연섬유와 고분자가 분산된 세라믹 시트를 가열하여 상기 고분자 분말을 용융시킨 후, 압축 성형하는 단계; 및 3) 상기 압축 성형된 시트를 냉각하는 단계;를 포함하며, 이에 따라 제조된 바이오 복합재료는 천연섬유를 보강재로 사용하여 친환경적이고, 세라믹 시트와 일체형으로 구성되어 난연성 문제가 해소되었을 뿐만 아니라, 저장탄성율, 치수안정성, 굴곡 특성, 경량 특성이 우수하며, 다양한 구조로 성형이 가능하여 자동자 및 건축내외장재로서 활용가능성이 매우 높다.
Abstract:
본 발명은 바이오 복합소재 및 이의 제조방법에 관한 것으로서, 보다 구체적으로 본 발명에 따른 바이오 복합소재는 천연섬유 및 나노 클레이를 포함한다. 본 발명에 따른 바이오 복합소재는 친환경 특성, 저장탄성률, 치수안정성, 강도 특성 등이 우수하므로, 이러한 특성을 바탕으로 기존의 바이오 복합소재의 한계를 극복할 수 있으며, 자동차 전자정보, 건축토목 등의 다양한 산업 물품에 적용할 수 있다.
Abstract:
PURPOSE: A drying/steaming apparatus and system for printing treatment of fabric using a mat catalytic burner is provided to continuously supply steam and heat and to enhance energy consumption. CONSTITUTION: A drying/steaming apparatus for printing treatment of fabric enable continuous drying and steaming of printed fabric. The apparatus is positioned from fabric in a predetermined interval. The apparatus comprises: a mat catalytic burner; and a gas supply line for supplying reacted gas to the mat catalytic burner. The apparatus is able to control the interval between the fabric and the mat catalytic burner.
Abstract:
PURPOSE: A carbon nano tube catalyst in which a metal catalyst nano particle is carried in an internal channel of a carbon nano tube applicable and a manufacturing method thereof are provided to carry the metal nano particle catalyst in only the internal channel, thereby improving durability and selective catalyst reaction activation. CONSTITUTION: Carbonaceous impurities(a) are removed by a carbon nano tube. Hydrochloric acid processing of the carbon nano tube is performed to remove a metal catalyst component. The carbon nano tube is precipitated in mixed acid solution. Ultrasonic processing of the carbon nano tube is performed. The carbon nano tube is washed or vacuum-dried. A metal precursor is applied to the carbon nano tube. A metal catalyst nano particle is carried in the internal channel of the carbon nano tube.
Abstract:
본 발명은 셀룰로우스 섬유를 열처리하여 새로운 구조를 갖는 탄화물을 생성하는 것과 함께, 이를 지지체로 이용하여 나노촉매입자를 생성시킨 후 이 나노입자의 활성을 통해 탄소나노튜브를 합성하는 것에 관한 내용으로, 그 목적은 수소 분위기의 고온에서 셀룰로우스 섬유를 열처리하여 마이크로 채널 및 높은 표면적을 갖는 독특한 구조의 탄화물을 생성하는 방식과 함께, 이 지지체 위에 얇은 촉매층을 코팅하고, 이것으로부터 나노촉매입자를 형성시키고, 이 나노입자를 이용하여 탄소나노튜브를 합성하는 방법을 제공하고, 이를 통해 전극, 나노/바이오 필터, 가스 컨센트레이터, 가스센서용 소재 등에 적용 가능한 탄소-탄소나노튜브 구조체를 만드는데 있다. 본 발명의 구성은 셀룰로우스 섬유를 열처리하여 얻은 탄화물 위에 탄소나노튜브를 직접 합성하는 방법에 있어서, 셀룰로우스 섬유를 세척 건조하고, 반응장치에 넣은 이후, 반응장치의 온도를 500-1500℃의 범위에서 조절하면서 수소만을 분위기 가스로 이용 열처리하여 탄화물을 생산하는 단계와; 이후 생성된 탄화물 위에 나노촉매입자를 코팅하고, 이렇게 준비된 시료를 500-700℃의 온도 범위에서 제어되는 고온의 반응로에 넣고 탄소소스를 공급함으로써 탄소나노튜브를 직접 수직 성장시키는 단계로 이루어진 합성방법을 특징으로 하는 셀룰로우스 섬유의 열처리를 통한 탄소를 지지체로 이용한 탄화물-탄소나노튜브 구조체의 합성방법과 그 탄화물-탄소나노튜브 구조체를 이용한 탄화물-탄소나노튜브 필터를 그 기술적 사상의 특징으로 한다. 셀룰로우스 섬유, 탄소나노튜브, 나노촉매입자, 수소열처리, 셀룰로우스 탄화물-탄소나노튜브 필터
Abstract:
A synthesis method of carbide-carbon nanotubes using carbon obtained by heat treatment of cellulose fiber as a supporter is provided to grow carbon nanotubes showing excellent electric conductance, specific surface area and mechanical strength on carbides with high density. A synthesis method of carbide-carbon nanotubes using carbon obtained by heat treatment of cellulose fiber as a supporter comprises the following steps of: cleaning and drying cellulose fiber and inputting the cellulose fiber into a reactor to produce carbide in the presence of only hydrogen as ambient gas while controlling a temperature to a range of 500-1500°C; coating the produced carbide with nano-catalytic particles; inputting the prepared sample into a reaction furnace controlled within 500-700°C; and growing carbon nanotubes vertically with high density while supplying carbon sources.
Abstract:
A cellulose electrode is provided to improve the performance of electrode while reducing the manufacturing cost of the fuel cell electrode, by inexpensive porous cellulose fiber having micropores as an electrode material of the fuel cell. A method for manufacturing platinum nano-catalyst-supported cellulose electrodes comprises a step for forming a plate-like cellulose plate after separating the cellulose fiber; a step for growing the carbon nanotube on the manufactured cellulose plate; and a step for supporting a platinum nano-catalyst on the cellulose plate grown with the carbon nanotube. The cellulose fiber is selected from the group consisting of henequen, kenaf, aaca, bamboo, hemp, linum usitatissimum, pineapple, ramie, and sisal hemp.
Abstract:
A synthesis of carbon nanotube through direct combining of carbon nanotube on the surface of nickel foil is provided to obtain novel electrode comprising carbon nanotube for electronic cell in order to increase energy performance by employing nickel foil itself as a metal catalyst. A synthesis of carbon nanotube through direct combining of carbon nanotube on the surface of nickel foil comprises steps of: preparing nickel foil having thickness of 0.1-0.2mm; cleaning the foil in acetone solution; placing the nickel foil in reaction device; feeding carrier gas consisting of hydrogen and nitrogen into the furnace; rising the furnace temperature to the synthesis condition; carrying out synthesis of carbon nanotube on the nickel foil while feeding carbon source; and cooling in a reducing atmosphere comprising nitrogen or argon gas and collecting carbon nanotube. The carrier gas is fed from an ambient temperature in the reaction device, and a supply of the gas is stopped when the synthesis is stopped. The shape of carbon nanotube on nickel foil is controlled by controlling the temperature from 650deg.C to 950deg.C. The growth distribution of the growing carbon nanotube on the surface of nickel is controlled to synthesize carbon nanotube on at least 98% of the surface area of nickel foil in 1 hour. The carbon source is one selected from acetylene, xylene and ethanol.
Abstract:
A method for preparing a platinum nanocatalyst for a fuel cell, and a platinum nanocatalyst prepared by the method are provided to improve the density and dispersion of a carbon nanotube supporting a platinum catalyst. A method for preparing a platinum nanocatalyst comprises the steps of pretreating a carbon paper for growing a carbon nanotube; dipping at least one particle selected from nickel, cobalt and iron as a metal catalyst for the grown of a carbon nanotube on the surface of a carbon paper; flowing a gaseous carbon source on the surface of a carbon paper and maintaining a suitable temperature to grow a carbon nanotube; removing the metal and pretreating the surface of a carbon nanotube for supporting platinum; and flowing a gaseous platinum precursor on the carbon nanotube to support platinum to it.