Abstract:
PURPOSE: A carbon dioxide absorbing agent containing hindered cyclic amines and a method for eliminating carbon dioxide using the same are provided to improve the speed of a carbon dioxide absorbing process and reducing regenerated energy. CONSTITUTION: A method for eliminating carbon dioxide using a carbon dioxide absorbing agent containing hindered cyclic amines includes the following: A carbon dioxide absorbing agent includes 16 wt% or less of alkaline carbonate and 10 wt% or less of hindered cyclic amines. The carbon dioxide absorbing agent is in contact with gas containing carbon dioxide(S110). The carbon dioxide is absorbed to the carbon dioxide absorbing agent(S120). The carbon dioxide absorbing agent is regenerated(S130).
Abstract:
본 발명은 이온전도성 산소분리막의 제조방법 및 그 산소분리막을 이용하여 산소를 분리하는 공정에 관한 것으로, 더욱 상세하게는 육방정계 구조 또는 능면체정계 구조를 갖는 페롭스카이트형 이온전도성 산소 분리막의 제조방법 및 그 산소분리막을 이용하여 산소를 분리하는 공정에 관한 것이다. 본발명에 따른 페롭스카이트형 이온전도성 산소분리막의 제조방법 및 그 산소분리막을 이용한 산소분리공정에 의하면 육방정계 또는 능면체정계 구조의 산소분리막을 통해 고효율의 산소 제조 공정을 개발할 수 있으며 고온 배열이 발생하는 공정과 연계하여 보다 높은 효율을 얻을 수 있다는 장점이 있다. 페롭스카이트 금속산화물, 이온전도성 산소분리막, 산소투과
Abstract:
본 발명은 액체내 기체 흡수 평형 상태에서 액체내 기체성분 농도를 측정하기 위한 장치로써, 측정대상 기체를 주입하는 기체주입 설비, 측정대상 기체를 측정 전에 일정온도를 유지하기 위한 기체저장 설비, 저장된 기체를 이용하여 기액 평형상태에서 액체 내 기체성분 농도를 측정하는 액체 내 기체성분 농도 측정설비, 기액 평형 상태에서 액체내 기체성분 농도를 측정하는데 요구되는 펌프 등을 포함하는 부속설비로 구성한 것을 특징으로 하고 있으며, 기액 반응기내에 마그네틱 바를 주입하고 반응기 하단에 마그네틱 바 회전기를 설치하여 신속하게 기액 평형 상태에서 액체내 기체성분 농도를 측정할 뿐만 아니라 장치가 단순하여 다단형으로 측정 반응기를 장착할 수 있으며, 기액 반응기내에 단순한 마그네틱 바만 주입함으로써 반응기내 부피 측정이 용이하여 기액 평형 상태에서 액체내 기체성분 농도를 정확하게 측정할 수 있는 기액 흡수 반응 시 액체 내 기체성분 농도 측정장치에 관한 것이다. 기액, 흡수제, 흡착제, 평형, 항온조, 이산화탄소
Abstract:
본 발명은 친수성 젖음벽을 구비한 기액 흡수평형 측정 장치에 관한 것으로, 기액 주입부, 기액흡수평형반응부 및 배출기체분석부를 구비하는 기액 흡수평형 측정 장치에 있어서, 상기 기액흡수평형반응부는 젖음벽, 기체통로 및 열유체통로를 구비하고 상기 젖음벽의 표면은 친수성 코팅재에 의해 코팅처리된 것을 특징으로 한다. 본 발명에 따른 친수성 젖음벽을 구비한 기액 흡수평형 측정 장치에 의하면 젖음벽 기액 흡수평형 측정장치의 핵심 부분인 젖음벽 부분을 친수성화 코팅처리하여 흡수액에 의해 젖는 부분을 균일화함으로써 기액 흡수 평형 상수, 각종 흡수 속도 데이터의 정밀도를 향상시킬 수 있는 장점이 있다. 젖음벽, 기액, 흡수제, 흡수속도 평형, 코팅
Abstract:
A gas-liquid absorption equilibrium measuring apparatus equipped with a hydrophilic wetted wall is provided to improve gas-liquid absorption equilibrium constant and data accuracy of absorbing rates by a uniformly coated hydrophilic wetted wall. A gas-liquid absorption equilibrium measuring apparatus comprises: a gas-liquid inlet part(110) inputting gas and absorption liquid; a gas-liquid absorption equilibrium reaction part(120) wherein an absorption equilibrium reaction of the inputted gas and absorption liquid takes place; and a discharge gas analysis part(130) analyzing ejected gas after the absorption equilibrium reaction. The gas-liquid absorption equilibrium reaction part includes: a hydrophilic wetted wall(121) having a path wherein the absorption liquid passes; a gas path(122) located near the hydrophilic wetted wall; and a thermal fluid path(123) in which thermal fluid flows in order for the gas and absorption liquid to maintain their constant temperature.
Abstract:
Provided are a method for effectively separating carbon dioxide during the reaction carbon when the carbon dioxide is generated in a production process of hydrogen that is a clean fuel through steam reforming reaction of methane that is a fossil fuel, and a process of easily desorbing carbon dioxide absorbed into an absorbent from the absorbent using high temperature gas. In a method for separating carbon dioxide using two reactors which are sequentially packed with a steam reforming catalyst and a carbon dioxide absorbent in a methane steam reforming reaction in which hydrogen and carbon dioxide are generated by reacting water with methane, a method for separating carbon dioxide using two high temperature gas regeneration type reactors comprises: a step(i) of separating hydrogen and carbon dioxide at 550 to 800 deg.C through the steam reforming reaction by injecting water and methane for steam reforming reaction into a first reactor, and regenerating a carbon dioxide absorbent by injecting high temperature gas heated to a temperature of 800 to 1,200 deg.C in a preheater into a second reactor, thereby heating the second reactor to the temperature of 800 to 1,200 deg.C; a step(ii) of regenerating a carbon dioxide absorbent into which carbon dioxide generated after performing the reforming reaction is absorbed by injecting high temperature gas heated to a temperature of 800 to 1,200 deg.C in a preheater into a first reactor, thereby heating the first reactor to the temperature of 800 to 1,200 deg.C, and separating hydrogen and carbon dioxide at 550 to 800 deg.C through the steam reforming reaction by injecting water and methane for steam reforming reaction into the first reactor; and a step(iii) of repeatedly performing the steps(i) and (ii).
Abstract:
본 발명은 열교환 매체의 제조방법에 관한 것으로서 보다 상세하게는 열교환 매체에 나노입자화 할 수 있는 금속 전구체와 분산안정제 및 환원제를 포함하도록 하여 열전도도를 향상시킬 수 있는 열교환 매체의 제조방법에 관한 것이다. 본 발명은 종래 기상 증발법에 의한 1단계 공정으로 나노유체를 제조하는 방법을 개선하여 액상제어에 의한 1단 공정에 의한 열교환 매체의 제조함으로써 열교환 매체에 함유된 나노입자의 크기, 형태, 열교환 매체에 나노입자 분산의 조절이 용이한 열교환 매체의 제조방법 제공을 목적으로 한다. 본 발명의 열교환 매체의 제조방법은 (1)열교환 매체 100중량%에 대하여 분산안정제 0.01∼10중량%를 첨가하여 교반시키는 단계와, (2)전기 (1)단계 후 금속 전구체 0.01∼20중량%를 첨가하여 반응시키는 단계와, (3)전기 (2)단계 후 환원제 0.01∼20중량%를 첨가하여 반응시키는 단계를 포함한다.
Abstract:
PURPOSE: A preparation method of barium titanate powder by hydrothermal synthesis is provided, which prevents corrosion of powder preparation equipment and lowers production cost by using Ba and Ti hydroxides as raw materials instead of conventional raw materials containing chlorides. CONSTITUTION: The continuous preparation method of fine and homogeneous BaTiO3 powder through hydrothermal process comprises the steps of: (i) mixing barium hydroxide, Ba(OH)2-8H2O, with titanium hydroxide, TiO(OH)2 in a concentration ratio of 0.5-2 : 1 under pressure of 10-40MPa, which is expressed by the formula TiO(OH)2 + Ba(OH)2-8H2O -->BaTiO3 +10H2O; (ii) supplying hot water to the mixture for 100-400deg.C of mixture; (iii) reacting 3-10sec. to form critical nuclei; (iv) supplying hot water to the intermediates forming critical nuclei, and dehydrating under subcritical and supercritical state to get BaTiO3; (v) separating synthesized materials and recycling.