Abstract:
본 발명은 광 크로스톡이 향상된 PLC(Planar Lightwave Circuit)형 디지털 광스위치에 관한 것으로, 방사형 감쇠기의 Y-분기 암(arm)의 직선 광도파로에 테이퍼 구조를 적용하여 광 가둠(optical confinement)이 약해지도록 함으로써, 동일한 온도차에서 광 감쇠가 더욱 효과적으로 발생되어 광 크로스톡이 향상되는 것을 특징으로 한다. 또한, 방사형 감쇠기의 열광학 히터를 상기 Y-분기 암의 직선 광도파로의 중심 상부에서 옆쪽으로 배치하여 입사된 광의 회절 및 방사를 가속화시킴으로써, 추가적인 광 감쇠에 의해 광 크로스톡을 더욱 향상시킬 수 있다. 광스위치, DOS, PLC, 평면광회로, 폴리머, 광 크로스톡, 가변 광감쇠기, VOA
Abstract:
PURPOSE: A wavelength selective switch having a simple structure using a plane wave technology is provided to minimize the demand quantity of a wavelength division multiplexer at low cost. CONSTITUTION: A first wavelength division multiplexer(110) separates and outputs optical signal of a plurality of frequency channels. Optical switches change a path of the optical signal outputted by wavelength channel from the first wavelength division multiplexer to an output port. The optical multiplexer is respectively connected to the output ports of the optical switch. A second wavelength division multiplexer(140) interlinks the output signals of optical multiplexers to the respective input port. The inputted signal is multiplexed to the output ports.
Abstract:
A wavelength division multiplexer/demultiplexer having a flat wavelength response is provided to obtain a flat wavelength response by making a size of an optical waveguide of a changed taper type structure small. A first slab waveguide(212) is connected to an input waveguide(210). A second slab waveguide is connected to an output waveguide. An arrayed waveguide lattice formed by a plurality of arrayed waveguides having a fixed optical path difference is arranged between the first slab waveguide and the second slab waveguide. An optical waveguide(230) of a changed taper type structure is inserted between the input waveguide and the first slab waveguide. An optical signal inputted from the first slab waveguide to the arrayed waveguide lattice has a sinc function distribution.
Abstract:
Provided are a multi-wavelength optical transceiver module and a multiplexer/demultiplexer using a thin film filter. The multi-wavelength optical transceiver module includes: a PLC platform, on which a predetermined optical waveguide unit is formed and an optical transmitter is mounted; an optical fiber coupled to one side of the PLC platform to transmit a predetermined light; a plurality of thin film filters coupled to another side of the PLC platform to separate input optical wavelengths; and an optical receiver coupled to one side of the thin film filters to receive light that is input from the optical fiber and transmits the thin film filters, thereby enabling mass production of the optical transceiver module with low cost.
Abstract:
본 발명은 실리카 및 폴리머 재료를 이용한 하이브리드형 광도파로 플랫폼 및 그 제조 방법에 관하여 개시한다. 기판 상에 실리카로 하부 클래드층, 중심 코어층, 상부 클래드층을 적층하고 포토리소그라피 및 식각 공정으로 패터닝하여 광도파로를 형성한다. 이 때 실장될 능동 광소자와 광도파로 중심 코어의 수직 정렬에 기여하는 테라스의 위치를 고려하여 식각 깊이를 결정한다. 상기 광도파로 측부의 기판 상에 폴리머로 상부 클래드층을 형성하고 표면을 평탄화한다. 상기 트렌치 영역의 상부 클래드층을 식각하여 하부 클래드층을 노출시키고, 노출된 하부 클래드층를 소정 깊이 식각하여 테라스를 형성한다. 상기 트렌치 영역의 하부 클래드층 상에 솔더 패드 및 금속 배선 형성하고, 광축이 상기 광도파로 코어층의 중심과 정렬되도록 상기 테라스 상에 광소자를 실장하는 동시에 솔더 패드 및 금속 배선과 상기 광소자를 전기적으로 연결한다.
Abstract:
본 발명은 실리카/폴리머 하이브리드 광소자 제작시 광섬유와의 결합 손실 온도 의존성을 억제하고, AWG 소자에서 추가로 발생하는 온도 의존성을 줄일 수 있는 실리카/폴리머 하이브리드 광도파로를 이용한 광소자를 제공하기 위한 것으로, 이를 위해 본 발명은, 양의 열광학 계수를 갖는 제1실리카층; 상기 제1실리카층 상에 배치되며 양의 열광학 계수를 갖는 실리카 코어; 상기 실리카 코어 상에서 외부와 결합되는 일측단으로부터 소정의 길이 만큼 연장된 타측단을 가지며, 상기 일측단으로부터 그 폭이 단조 감소하여 상기 타측단에서 적어도 상기 실리카 코어의 폭을 갖도록 배치되며 양의 열광학 계수를 갖는 제2실리카층; 및 상기 제2실리카층 상에 배치되며 음의 열광학 계수를 갖는 폴리머층을 포함하는 실리카/폴리머 하이브리드 광도파로를 이용한 광소자를 제공한다.
Abstract:
An optical waveguide platform and a manufacturing method thereof are provided. In the provided optical waveguide platform, a terrace on which an optical device is mounted is formed by using an etch stopper pattern formed on a lower clad layer. Therefore, the optical device is mounted without processing a silicon substrate. In addition, in the provided optical waveguide platform, the etch stopper pattern is formed on the lower clad layer to prevent defocus in a photolithography process due to an etch step, so as not to damage a fine waveguide pattern. Moreover, an optical waveguide is formed on the terrace in manufacturing the optical waveguide platform to examine the characteristics of the optical waveguide device before etching a trench.
Abstract:
PURPOSE: An optical waveguide platform and a method for manufacturing the same are provided to solve the limitation of substrate directionality due to the anisotropic etching of the substrate by allowing the semiconductor device to mount on the silicon substrate without the fabrication step of the silicon substrate. CONSTITUTION: An optical waveguide platform includes a substrate(301), an optical waveguide, a terrace(308), a metal and solder(309,310) and an optical device(311). The optical waveguide is provided with a bottom clad layer(302) formed on a portion of the substrate(301), a central core layer(303) and a top clad layer(304) patterned thereon the waveguide. The terrace(308) is formed another portion of the substrate(301) by patterning the bottom clad layer(302). The metal and solder(309,310) are formed on the top of the terrace(308) and the optical device(311) is mounted on the top of the terrace(308).
Abstract:
PURPOSE: An optical waveguide platform is provided, which is fabricated with a simple process without an etching process of a silicon substrate or a polishing process of a silica film. CONSTITUTION: The optical waveguide platform includes a substrate(100), and a bottom clad layer(102) which is formed on the substrate and has a terrace(114). An etch stop pattern(104) is formed on the terrace. A height adjustment layer(106) is formed on the bottom clad layer of a part where the terrace and the etch stop pattern are not formed, and align an optical device and an optical waveguide accurately by thickness control. An optical waveguide core layer(108) and a top clad layer(110) are formed on the height adjustment layer in sequence. And a metallic film(116) is formed on a bottom of the terrace.
Abstract:
PURPOSE: A fabrication method of a plate-type optical waveguide is provided to select any amorphous material as a material for a core of waveguide by using an engraving etching. CONSTITUTION: After forming a metal mask on a silica glass substrate(210) by a thermal deposition or a sputtering, a waveguide pattern is formed through a lithography processing. At this time, the waveguide pattern has a groove on a defined core region. A groove corresponding to the core of the waveguide is formed by etching the silica glass substrate(210). Then, an amorphous metal oxidation material(221) is filled into the groove formed on the silica glass substrate(210) by performing a sol-gel processing. An amorphous layer(250) having a similar refractive index with the silica glass substrate(210) is deposited on the entire surface of the resultant structure.