Abstract:
A light directing composite film includes a planar top major surface, a planar bottom major surface, a plurality of lenticular lens elements disposed between the top major surface and the bottom major surface, and a plurality of light reflection regions and light transmission regions disposed between the plurality of lenticular lens and the planar bottom major surface.
Abstract:
A backlight includes n1, n2, and n3 colored LED light sources of a first, second, and third (non-white) color respectively, and a drive circuit connected to these sources. The drive circuit is configured to drive each of the first, second, and third light sources within a specified percentage, such as 10%, of their respective maximum drive characteristics, and the numbers n1, n2, and n3 are selected so that light from the energized first, second, and third LED light sources, when combined, is substantially white. In some cases, the backlight also includes a number n4 of white LED sources, and the colored LED sources may or may not be driven within 10% of their maximum ratings. The number n4 of white sources is selected to increase the brightness of the backlight while maintaining the color gamut of the backlight output within a specified percentage, such as 10%, of a desired specification.
Abstract:
An illumination assembly (200) including a thermally conductive substrate (212), a patterned conductive layer (218) proximate a major surface (214) of the thermally conductive substrate, a dielectric layer (216) positioned between the patterned conductive layer and the major surface of the substrate, and at least one LED (220) including a post (230) that is attached to the thermally conductive substrate such that at least a portion of the post is embedded in the thermally conductive substrate is disclosed. The at least one LED can be thermally connected to the thermally conductive substrate through the post and electrically connected to the patterned conductive layer. The dielectric layer can be reflective.
Abstract:
Disclosed herein is an optical device having a light source, a viscoelastic lightguide and a retroreflective film suitable for retroreflecting light. Light from the light source enters the viscoelastic lightguide and is transported within the lightguide by total internal reflection. The optical device may have a “front lit” configuration such that light being transported within the lightguide is extracted and retroreflected by the film toward a viewer. The optical device may have a “back lit” configuration such that light being transported within the lightguide is extracted and transmitted through the film toward a viewer. The retroreflective film may comprise beaded retroreflective sheeting such as that used in traffic signs and markings.
Abstract:
A sound absorbing luminaire providing lighting for an interior space environment and managing the acoustics within the environment. The luminaire includes a frame holding an acoustic film and a lighting element, forming a resonant cavity between them. The acoustic film is used for absorbing sound within the resonant cavity, and the lighting element provides light from a light source, such as LEDs, through the acoustic film. An optical film can be mounted in the frame between the acoustic film and the lighting element for providing a desired distribution of light.
Abstract:
This application describes a front. lit reflective display assembly including a reflective display and an illumination article (600) for front - lighting the display when the article is optically coupled to a light source (601). The illumination article includes a variable index light extraction layer (630) optically coupled to a lightguide (610). The variable index light extraction layer has first and second regions, the first region comprising nanovoided polymeric material, the second region comprising the nanovoided polymeric material and an additional material, the first and second regions being disposed such that for light being transported at a supercritical angle in the lightguide, the variable index light ectraction layer selectively extracts the light in a predetermined way based on the geometic arrangement of the first and second regions. Front- lit reflective display device including the front- lit reflective display assembly optically coupled to a light source are also described.
Abstract:
Illumination device having a viscoelastic lightguide and a flexible light source is described. The flexible light source includes a plurality of electrically inter-connected light emitting diodes disposed on a flexible mat and optically coupled to the viscoelastic lightguide.
Abstract:
A backlight is disclosed and includes a visible light transmissive body primarily propagating light by TIR with a light input surface and a light output surface and a light guide portion and a light input portion. The light guide portion has a light reflection surface and a light emission surface. The light input portion has opposing side surfaces that are not parallel. One of the opposing surfaces is co-planar with either the light emission surface or the light reflection surface. A light source is disposed adjacent to the light input surface. The light source emits light into the light input portion. A reflective layer is disposed adjacent to or on the opposing side surfaces.
Abstract:
The present disclosure is generally directed to illumination devices, and particularly directed to illumination devices utilizing light transmissive layers and methods for making the same. An illumination device and method for making the device are disclosed. The device, in particular, includes a substrate and conductive region disposed on the substrate. One or more light sources, such as LEDs, are disposed on a surface of the substrate and electrically coupled to the electrically conductive region for supply of electric current. The device also includes one or more light transmissive layers disposed on the substrate and the at least one light source to encapsulate light sources and also to control characteristics of light delivery from the light sources as light passes through the light transmissive layers.
Abstract:
An illumination assembly (200) including a thermally conductive substrate (212), a reflective layer (240) proximate a first major surface (214) of the thermally conductive substrate, a patterned conductive layer (250) positioned between the reflective layer and the first major surface of the thermally conductive substrate and electrically isolated from the thermally conductive substrate, and at least one LED (220) including a post (230) that is attached to the thermally conductive substrate is disclosed. The at least one LED can be thermally connected to the thermally conductive substrate through the post and electrically connected to the patterned conductive layer.