Abstract:
An electronic device may have peripheral conductive housing structures divided into first and second segments. First and second antennas may be formed from the segments and may be fed using a flexible printed circuit structure. The structure may include a first substrate attached to the first segment, a second substrate soldered to the first substrate and attached to the second segment, and a third substrate soldered to the second substrate. Third and fourth antennas may be formed on the first substrate whereas fifth and sixth antennas are be formed on the second substrate. The second substrate may be folded and may have a lateral area oriented perpendicular to the third, fourth, fifth, and sixth antennas. Modularly forming the structure in this way may maximize the flexibility with which the structure can accommodate other components, thereby minimizing the space consumption associated with mounting and feeding the antennas without sacrificing wireless performance.
Abstract:
Methods and systems for detecting and compensating for expansion of rechargeable batteries over time. An expansion detector may be coupled to or positioned proximate a rechargeable battery to monitor for expansion thereof. After expansion exceeding a selected threshold is detected, the expansion detector may report the expansion to an associated processing unit. The processing unit may undertake to arrest further rechargeable battery expansion by modifying or changing one or more characteristics of charging and/or discharging circuitry coupled to the rechargeable battery. For example, the processing unit may charge the rechargeable battery at a lower rate or with reduced voltage after detecting expansion.
Abstract:
A strobe module can include a Fresnel lens that defines an external surface of the strobe module and a sidewall at least partially defining an internal volume and defining an external channel. A gasket can be disposed in the external channel. A substrate can be coupled to the sidewall to further define the internal volume and a light source can be disposed on the substrate in the internal volume.
Abstract:
An electronic device that includes a vision system carried by a bracket assembly is disclosed. The vision system may include a first camera module that captures an image of an object, a light emitting element that emits light rays toward the object, and a second camera module that receives light rays reflected from the object. The light rays may include infrared light rays. The bracket assembly is designed not only carry the aforementioned modules, but to also maintain a predetermined and fixed separation between the modules. The bracket assembly may form a rigid, multi-piece bracket assembly to prevent bending, thereby maintaining the predetermined separation. The electronic device may include a transparent cover designed to couple with a housing. The transparent cover includes an alignment module designed to engage a module and provide a moving force that aligns the bracket assembly and the modules to a desired location in the housing.
Abstract:
Methods and systems for detecting and compensating for expansion of rechargeable batteries over time. An expansion detector may be coupled to or positioned proximate a rechargeable battery to monitor for expansion thereof. After expansion exceeding a selected threshold is detected, the expansion detector may report the expansion to an associated processing unit. The processing unit may undertake to arrest further rechargeable battery expansion by modifying or changing one or more characteristics of charging and/or discharging circuitry coupled to the rechargeable battery. For example, the processing unit may charge the rechargeable battery at a lower rate or with reduced voltage after detecting expansion.
Abstract:
An electronic device such as a handheld device may have a rectangular housing with a rectangular periphery. A conductive peripheral housing member may run along the rectangular periphery and may surround the rectangular housing. Radio-frequency transceiver circuitry within the electronic device may be coupled to antenna structures for transmitting and receiving radio-frequency signals. The conductive peripheral housing member may form part of the antenna structures. A gap in the conductive peripheral housing member may be filled with dielectric. The conductive peripheral housing member may be configured to form a recess. The recess may have the shape of a rectangle, oval, diamond, or other shape that overlaps and is bisected by the gap. The recess may also have the shape of a groove that extends around the entire periphery of the housing. The dielectric in the recess may include one or more different materials such as clear and opaque polymers.
Abstract:
Custom antenna structures may be used to improve antenna performance and to compensate for manufacturing variations in electronic device antennas. An electronic device antenna may include an antenna tuning element and conductive structures formed from portions of a peripheral conductive housing member and other conductive antenna structures. The antenna tuning element may be connected across a gap in the peripheral conductive housing member. The custom antenna structures may be used to couple the antenna tuning element to a fixed custom location on the peripheral conductive housing member to help satisfy design criteria and to compensate for manufacturing variations in the conductive antenna structures that could potentially lead to undesired variations in antenna performance. Custom antenna structures may include springs and custom paths on dielectric supports.
Abstract:
An internal fastening feature that also acts as a means of separating a housing body from a protective cover is disclosed. The internal fastening feature includes two arms that meet at a central hub that is pivotally coupled to a bracket. The bracket is coupled to an interior-facing surface of the protective cover. A first arm defines a threaded opening that receives a fastener that keeps the protective cover coupled with the housing body. A second arm, extending in a different direction than the first arm, is positioned above a protrusion of the housing body. When the fastener is disengaged from the first arm, a disengaging tool can apply a force to the first arm that rotates the second arm until it presses against the protrusion. The force applied to the protrusion is then transmitted to the protective cover, which is consequently pushed away from the housing body.