Abstract:
An acoustic device such as a microphone or speaker is positioned with and coupled to a housing to connect an acoustic port of the acoustic device with an external opening of the housing. A reservoir is connected to the external opening via a bleed channel. The bleed channel may be less resistive to liquid ingress than the acoustic port. As such, the reservoir and bleed channel may redirect liquid from the external opening away from the acoustic port. In some implementations, the reservoir and/or the bleed channel may be defined by one or more acoustically permeable barriers such as meshes that cover the acoustic port, compressible materials such as foams that form a perimeter around the acoustic port, and/or adhesive layers that couple the acoustic device, the housing, and/or one or more other components.
Abstract:
A removable component for use with an earphone is disclosed. As an example, the removable component can be an ear tip. According to one aspect, an improved ear tip can be provided for use with a headphone. The ear tip is suitable for in-ear operation and can have a cosmetic deformable outer member. The deformable outer member can enable the ear tip to readily conform to a user's ear. The ear tip can also include an inner member to structurally support the outer member and to facilitate attachment to a headphone. Methods for forming such ear tips are also disclosed.
Abstract:
Aesthetically pleasing strain-relief members for cables and methods for making the same are disclosed. The strain-relief member include a tapered, inner strain-relief portion and an aesthetically pleasing outer strain-relief portion.
Abstract:
A high strength retention loops for a wearable band of an electronic device and method of forming the retention loop. The retention loop of the wearable band may include a bottom layer, a tensile member encircling the bottom layer, and a top layer positioned adjacent to and substantially encircling the bottom layer and the tensile member. A distinct retention loop may include a single piece of folded leather material having an exterior portion, and two interior portions positioned adjacent the outer portion. The distinct retention loop may also include a tensile member positioned between the exterior portion and the two interior portions.
Abstract:
Embodiments are directed to a wearable device including first and second band straps attached to a device body. A buckle mechanism is configured to attach the first band strap to the second band strap and includes a spring bar attached to an end of the first band strap and a buckle loop engaged to the spring bar. A tang is configured to engage a hole formed in the second band strap to secure the first band strap to the second band strap. The tang defines an aperture that receives the spring bar and is configured to pivot about an offset axis that is offset with respect to an axis of the bar. As the tang is rotated, a restoring force biases the tang toward the buckle loop.
Abstract:
Embodiments disclosed are directed to a woven fabric band that is capable of being secured to another object using threads or the band itself. The woven fabric band may include an inner layer having a first temperature melting point and an outer layer having a second temperature melting point that is higher than the first temperature melting point. When heat having the first temperature is applied to the woven fabric band, the inner layer of the woven fabric band melts while the outer layer remains in its original state. When the inner layer melts, the inner layer conforms to a first shape. As a result of the inner layer conforming to the first shape, the outer layer also conforms to the same shape.
Abstract:
An improved method is employed to attach an enclosure to a connector body having relatively small geometry. One or more bonding channels are disposed in the outside surface of the connector body. During assembly of an enclosure over the connector body, a bonding material is distributed within the bonding channels and subsequently cured. The bonding channels and the bonding material are designed to employ capillary wicking to aid in the distribution of the bonding material within the bonding channels.
Abstract:
This is directed to a cable for use with an electronic device. The cable can be substantially flat, such that all of the conductive wires of the cable are substantially in the same plane. A spacer can be placed between the wires to ensure that wires conducting signals remain a minimum distance apart to avoid signal degradation. The spacer can also control the bending of the cables to favor bending in a preferred direction while reducing or limiting bending in a less preferred direction.
Abstract:
An improved method is employed to attach an enclosure to a connector body having relatively small geometry. One or more bonding channels are disposed in the outside surface of the connector body. During assembly of an enclosure over the connector body, a bonding material is distributed within the bonding channels and subsequently cured. The bonding channels and the bonding material are designed to employ capillary wicking to aid in the distribution of the bonding material within the bonding channels.
Abstract:
Systems and methods are provided for reducing unwanted noise in an electronic audio signal, wherein a computing device having a microphone is configured to receive signals from a sensor on an external device such as a camera, second microphone, or movement sensor. The signals from the sensor are used to identify sound information or characteristics of sounds made by a source of noise, and the audio signal of the microphone is modified to reduce unwanted sounds based on that sound information or based on sounds identified a second audio signal obtained by the second microphone, thereby improving teleconference and video conference audio quality and removing distracting noises from transmitted audio output.