Abstract:
A hybrid vehicle includes a multi-mode power system. The power system includes a battery, an electrical power input, a first motor/generator, a second motor/generator, and a clutch. A first operating mode is defined by deactivation of the internal combustion engine and the operation of the vehicle by electrical force provided from the battery to the second motor/generator. In a second operating mode, activation of the internal combustion engine generates electrical power by providing rotational force to the first motor/generator. In a third operating mode, engagement of the clutch couples the internal combustion engine and the second motor/generator to provide rotational force to the wheels. In a fourth operating mode, engagement of the clutch couples the internal combustion engine with the second motor/generator, and the first motor/generator further provides rotational force to the wheels.
Abstract:
A hybrid vehicle includes a multi-mode power system. The power system includes a battery, an electrical power input, a first motor/generator, a second motor/generator, and a clutch. A first operating mode is defined by deactivation of the internal combustion engine and the operation of the vehicle by electrical force provided from the battery to the second motor/generator. In a second operating mode, activation of the internal combustion engine generates electrical power by providing rotational force to the first motor/generator. In a third operating mode, engagement of the clutch couples the internal combustion engine and the second motor/generator to provide rotational force to the wheels. In a fourth operating mode, engagement of the clutch couples the internal combustion engine with the second motor/generator, and the first motor/generator further provides rotational force to the wheels.
Abstract:
The present invention discloses a hybrid power driving system, comprising: an engine, a clutch, a first shaft, a second shaft disposed parallel to the first shaft, a motor, an energy storage device, and an output gear. The engine may be connected with the first shaft via the clutch. The motor is connected with the second shaft directly or indirectly, and is electrically connected with the energy storage device. The first shaft has a first gear, a second gear and a first synchronizer, in which the first gear and the second gear are mounted on the first shaft via bearings respectively, and the first synchronizer is selectively engaged with the first gear or the second gear. The second shaft may have a third gear, a fourth gear and a second synchronizer, in which the third gear may be mounted on the second shaft via a bearing. The fourth gear may be fixed to the second shaft. And the second synchronizer may be selectively engaged with the third gear or the fourth gear. The first gear may be engaged with the third gear, the second gear may be engaged with the fourth gear. And the third gear may be engaged with an output gear. The present invention also discloses a driving method of a hybrid power driving system. Through the first synchronizer and the second synchronizer selectively engaging with corresponding gears, a plurality of operating modes can be realized. And the structure is simple and compact.
Abstract:
A control method of the electromotor comprises the following steps: setting an alternating axis target current according to the rotor angular velocity of the motor and setting a direct axis target current according to the torque of the motor; detecting and collecting the three-phase currents of the electromotor, simultaneously detecting the degree of the electromotor rotor position; converting the three-phase currents of the electromotor to an alternating axis actual current and a direct axis actual current by Park conversion and Clark conversion according to the degree of the rotor position; setting the difference between the target current and the actual current as the input of the current loop, outputting the required direct axis current and the required alternating axis current by PI regulation; calculating the three phase voltage according to the required direct axis current and the required alternating axis current output by PI regulation and the degree of the electromotor rotor position; obtaining PWM control waveform through three-phase voltage, the said PWM control waveform controlling the conversion from the direct current to the alternating current, and the converted alternating current driving the electromotor.
Abstract:
An energy conversion device is provided, including a motor coil (11), a bridge arm converter (12), and a bidirectional bridge arm (13). The bridge arm converter (12) is separately connected to the motor coil (11) and the bidirectional bridge arm (13). The motor coil (11), the bridge arm converter (12), and the bidirectional bridge arm (13) are all connected to an external charging port (10). Both the bridge arm converter (12) and the bidirectional bridge arm (13) are connected to an external battery 200. The motor coil (11), the bridge arm converter (12), and the external charging port (10) form a DC charging circuit for charging the external battery 200. The motor coil (11), the bridge arm converter (12), the bidirectional bridge arm (13), and the external charging port (10) form an AC charging circuit for charging the external battery (200). The motor coil (11), the bridge arm converter (12), and the external battery (200) form a motor drive circuit.
Abstract:
The present application discloses a battery equalization system, a vehicle, a battery equalization method, and a storage medium. The battery equalization system includes: a collection circuit; an equalization circuit; a controller; a charging branch circuit, connected to a charging device and a battery pack; and a first power supply branch circuit, connected to the charging device and the battery equalization system, and configured to supply power to the battery equalization system. When a state-of-charge of the battery pack is full and a cell in the battery pack needs enabling of equalization, the controller controls the charging branch circuit to disconnect, and controls the first power supply branch circuit to keep connected, so that an equalization module performs equalization processing on the cell that needs enabling of equalization. By improving the electrical connection structure of the battery equalization system, the present application extends the battery equalization time, improves the battery equalization effect, and resolves the technical problem of low equalization efficiency of the battery equalization system in the related art.
Abstract:
The present disclosure provides a hybrid electric vehicle, a drive control method and a drive control device of a hybrid electric vehicle. The drive control method includes: obtaining a current gear position and a current operating mode of the hybrid electric vehicle, a current electric charge level of a power battery and a slope of a road where the hybrid electric vehicle is; determining whether the hybrid electric vehicle is within a taxiing start-stop interval according to the current gear position of the hybrid electric vehicle, the current electric charge level of the power battery, and the slope of the road; if the hybrid electric vehicle is within the taxiing start-stop interval, further obtaining a current speed of the hybrid electric vehicle; and causing the hybrid electric vehicle to enter a small load stop mode or a small load stall mode according to the current speed.
Abstract:
A power transmission system for a vehicle includes: an engine; input shafts, each of the input shafts being provided with a shift driving gear thereon; output shafts, each of the output shafts being provided with a shift driven gear configured to mesh with a corresponding shift driving gear; a generator gear fixed on one of the output shafts; a reverse output gear configured to rotate together with or to disengage from a shift driving gear; an output idler gear configured to engage with one of the output shafts so as to rotate together with the output shaft or disengage from the output shaft so as to rotate with the output shaft at different speeds; a motor power shaft configured to rotate together with the generator gear; and a first motor generator configured to rotate together with the motor power shaft. A vehicle including the power transmission system is also provided.
Abstract:
A hybrid vehicle includes a multi-mode power system. The power system includes a battery, an electrical power input, a first motor/generator, a second motor/generator, and a clutch. A first operating mode is defined by deactivation of the internal combustion engine and the operation of the vehicle by electrical force provided from the battery to the second motor/generator. In a second operating mode, activation of the internal combustion engine generates electrical power by providing rotational force to the first motor/generator. In a third operating mode, engagement of the clutch couples the internal combustion engine and the second motor/generator to provide rotational force to the wheels. In a fourth operating mode, engagement of the clutch couples the internal combustion engine with the second motor/generator, and the first motor/generator further provides rotational force to the wheels.