Abstract:
A network comprising: (a) a plurality of different receptacles for facilitating an electrical connection to different information networks requiring different access authorization, each different receptacle coupled to one and only one different information network, each receptacle having an inner surface with a first geometry, the first geometry comprising at least a slot, a certain number of receptacles having different first geometries in which the slots are in different positions; and (b) a plurality of different plugs for coupling with the different receptacles, each plug having a second geometry, the second geometry comprising at least a key in a certain position, the certain number of plugs having different second geometries in which the keys are in different positions, each different first geometry corresponding to one and only one second geometry such that the plugs and receptacles of corresponding first and second geometries are mating pairs.
Abstract:
A vehicle drivetrain (110) includes an engine (122) with a vertical crankshaft (124), a first transmission (126) below the engine and driven by the crankshaft, a second transmission (128) above the first transmission and horizontally adjacent the engine and having an input driven by the first transmission and having an output providing vehicle propulsion. A module pre-assembled unit is ready for drop-in mounting to a vehicle.
Abstract:
The present invention provides methods, as well as compositions related thereto, for the efficient transduction of cells using viral vectors. The efficiency of transduction is increased by contacting the cell to be transduced with one or more molecules that bind the cell surface. Contact with a cell surface binding molecule may occur before, after, or simultaneously with contact between the viral vector and the cell. The transduced vectors may be constructed to express a gene of interest, permitting the transduced cells to be used as therapeutic and prophylactic agents.
Abstract:
A machine and process for treating contaminated water having a chamber with at least two electrodes having voltages of different polarities and made of metals containing multivalent salts; an inlet port for introduction of untreated contaminated water to the chamber, wherein the water is treated by passing over the electrodes; an outlet port for outputting the treated water from the chamber; and one or more scraper blades in close proximity with the electrodes wherein the blades are capable of movement along the length of the electrodes to remove accumulated debris. A preferred embodiment includes electrodes are made of noble elements and the scraper is affixed in close proximity to the electrode for removal of debris. Another preferred embodiment includes having the electrodes oriented along a vertical flow of the water. Another preferred embodiment includes a drum shaped electrode that rotates about a shaft while it facilitates cleaning of the electrodes. The cleaning motion is motor driven.
Abstract:
An animal decoy apparatus includes a housing assembly which simulates an animal body. A leg assembly is partially housed within the housing assembly and partially extends outside of the housing assembly. A leg retraction and extension assembly is housed within the housing assembly and is connected between the housing assembly and the leg assembly. A leg-controlling wave receiver assembly is housed with the housing assembly and is connected to the leg retraction and extension assembly. The leg-controlling wave receiver assembly controls the leg retraction and extension assembly. A manually operated wave transmitter assembly is located outside of the housing assembly. The wave transmitter assembly transmits a control signal that is received by the leg-controlling wave receiver assembly. The housing assembly simulates a body of a water fowl. A pair of upper appendages are connected to the housing assembly. The upper appendages extend outward from the housing assembly. An upper appendage flapping assembly is housed within the housing assembly and is connected between the housing assembly and the upper appendages. An appendage-controlling wave receiver assembly is housed within the housing assembly and is connected to the upper appendage flapping assembly. The appendage-controlling wave receiver assembly controls the upper appendage flapping assembly. The appendage-controlling wave receiver assembly is controlled by the wave transmitter assembly. The upper appendages simulate wings on a water fowl.