Abstract:
In one illustrative example, network fabric policy data associated with an application, subscriber, and/or device may be received. Mobile network policy data that corresponds to the received network fabric policy data may be selected, based on stored policy mappings between a set of network fabric policy profiles of a fabric network and a set of mobile network policy profiles of a mobile network. A bearer or Quality of Service (QoS) flow of the mobile network may be established in satisfaction of the selected mobile network policy data. In addition, a packet filter of a traffic flow template (TFT) or a packet detection rule (PDR) may be generated and applied in order to direct IP traffic flows associated with the application to the established bearer or QoS flow for communication in the mobile network.
Abstract:
High-level network policies that represent a virtual private network (VPN) as a high-level policy model are received. The VPN is to provide secure connectivity between connection sites of the VPN based on the high-level network policies. The high-level network policies are translated into low-level device configuration information represented in a network overlay and used for configuring a network underlay that provides the connections sites to the VPN. The network underlay is configured with the device configuration information so that the network underlay implements the VPN in accordance with the high-level policies. It is determined whether the network underlay is operating to direct traffic flows between the connection sites in compliance with the high-level network policies. If it is determined that the network underlay is not operating in compliance, the network underlay is reconfigured with new low-level device configuration information so that the network underlay operates in compliance.
Abstract:
Aspects of the embodiments are directed to systems, methods, and computer program products to program, via a northbound interface, a mapping between an endpoint identifier (EID) and a routing locator (RLOC) directly into a mapping database at a mapping system; receive, from a first tunneling router associated with a first virtual network, a mapping request to a second virtual network, the first router compliant with a Locator/ID Separation Protocol, the mapping request comprising an EID tuple that includes a source identifier and a destination identifier; identify an RLOC based, at least in part, on the destination identifier of the EID tuple from the mapping database; and transmit the RLOC to the first tunneling router implementing an high level policy that has been dynamically resolved into a state of the mapping database.
Abstract:
An example method for service insertion in a network environment is provided in one example and includes configuring a service node by tagging one or more interface ports of a virtual switch function to which the service node is connected with one or more policy identifiers. When data traffic associated with a policy identifier is received on a virtual overlay path the virtual switch function may then terminate the virtual overlay path and direct raw data traffic to the interface port of the service node that is tagged to the policy identifier associated with the data traffic.
Abstract:
Methods and apparatus are provided for improving both node-based and message-based security in a fibre channel network. Entity to entity authentication and key exchange services can be included in existing initialization messages used for introducing fibre channel network entities into a fibre channel fabric, or with specific messages exchanged over an already initialized communication channel. Both per-message authentication and encryption mechanisms can be activated using the authentication and key exchange services. Messages passed between fibre channel network entities can be encrypted and authenticated using information provided during the authentication sequence. Security services such as per-message authentication, confidentiality, integrity protection, and anti-replay protection can be implemented.
Abstract:
A method in one embodiment includes intercepting a message in an on-board unit (OBU) of a vehicular network environment between a source and a receiver in the vehicular network environment, verifying the message is sent from the source, verifying the message is not altered, evaluating a set of source flow control policies associated with the source, and blocking the message if the set of source flow control policies indicate the message is not permitted. In specific embodiments, the message is not permitted if a level of access assigned to the source in the set of source flow control policies does not match a level of access tagged on the message. In further embodiments, the method includes evaluating a set of receiver flow control policies associated with the receiver, and blocking the message if the set of receiver flow control policies indicates the message is not permitted.
Abstract:
An example method for service insertion in a network environment is provided in one example and includes configuring a service node by tagging one or more interface ports of a virtual switch function to which the service node is connected with one or more policy identifiers. When data traffic associated with a policy identifier is received on a virtual overlay path the virtual switch function may then terminate the virtual overlay path and direct raw data traffic to the interface port of the service node that is tagged to the policy identifier associated with the data traffic.