Abstract:
A water heater includes a water tank having an inlet and an outlet, and a flue extending through the tank. A nozzle is positioned near a first end of the flue, arranged so as to emit a fuel stream into the flue, and a flame holder is located within the flue in a position to receive the fuel stream and to hold a flame entirely within the flue. A controller variably controls a flow of fuel to the nozzle according to a temperature of water in the tank.
Abstract:
A furnace has a fuel and oxidant source to create a flow of combustible fuel and oxidant mixture, a perforated flame holder on which the flow impinges, and a support structure to support the perforated flame holder in a position where it at least partially contains combustion of the fuel and oxidant mixture. The support structure mechanically engages with the interior of the furnace to support the perforated flame holder, which may be movable within the furnace via a mechanism to optimize combustion or reduce NOx. The support may contain fluid coolant. The perforated flame holder may be moved into and out of a combustion region.
Abstract:
According to an embodiment, a combustion system is provided, which includes a nozzle configured to emit a diverging fuel flow, a flame holder positioned in the path of the fuel flow and that includes a plurality of apertures extending therethrough, and a preheat mechanism configured to heat the flame to a temperature exceeding a startup temperature threshold.
Abstract:
A combustion system such as a furnace or boiler includes a perforated reaction holder configured to hold a combustion reaction that produces very low oxides of nitrogen (NOx).
Abstract:
According to an embodiment, a combustion system is provided, which includes a nozzle configured to emit a diverging fuel flow, a flame holder positioned in the path of the fuel flow and that includes a plurality of apertures extending therethrough, and a preheat mechanism configured to heat the flame to a temperature exceeding a startup temperature threshold.