Abstract:
A method of making an article of manufacture is provided and includes the steps of spraying a first coating onto a substrate, and depositing a second coating on the first coating by 3-D printing a material disposed in a pattern. The pattern includes ridges disposed at a base surface of a turbine part. Each ridge defined by first and second sidewalls, each sidewall having a first and second end. The ends extend from the base surface, the sidewalls slope toward each other until meeting at second ends of respective first and second sidewalls defining a centerline and a top portion of the ridge. The sidewalls are inclined with substantially equal but opposite slopes with respect to the base surface. The ridges correspond to a back portion of a turbine bucket and are oriented at a first angle with respect to an axis of rotation of the bucket.
Abstract:
Methods of providing a fiber reinforced braze include providing a substrate, disposing at least a first fiber reinforcement layer on the substrate, wherein the at least first fiber reinforcement layer comprises a fiber material, disposing at least a first braze layer on the at least first fiber reinforcement layer, wherein a melt temperature of the braze layer is lower than a melt temperature of the fiber material, and heating the at least first fiber reinforcement layer and the at least first braze layer to bond the fiber reinforced braze to the substrate.
Abstract:
A metal chemistry includes an amount of chromium weight of between about 9.0% and about 16% by weight, an amount of cobalt of between about 7.0% and about 14% by weight, an amount of molybdenum of between about 10% and about 20% by weight, an amount of iron of between about 1.0% and about 5.0% by weight, an amount of aluminum of between about 0.05% and about 0.75% by weight, an amount of titanium of between about 0.5% and about 2.0% by weight, an amount of manganese not to exceed about 0.8% by weight, an amount of carbon of between about 0.02% and about 0.10% by weight, an amount of a titanium+aluminum alloy of between about 0.55% and about 2.75% by weight, and an amount of nickel.
Abstract:
Methods for modifying a plurality of cooling holes of a component include disposing a recess-shaped modification in a recess of the component comprising a plurality of cooling hole outlets, wherein the recess-shaped modification is formed to substantially fill the recess and comprising a plurality of modified cooling holes passing there through. The method further includes aligning the plurality of modified cooling holes of the recess-shaped modification with the plurality of cooling hole outlets of the component, and, bonding the recess-shaped modification disposed in the recess to the component, wherein the plurality of modified cooling holes of the recess-shaped modification is fluidly connected with the plurality of cooling holes of the component.
Abstract:
A turbine component is provided. The turbine component includes an airfoil having a first surface and a second surface. A thermal barrier coating is coupled to the second surface, wherein the thermal barrier coating includes a first portion, a second portion and a trench defined between the first and second portions. A channel is coupled in flow communication to the first surface and the trench, wherein the channel includes a first sidewall and a second sidewall opposite of the first sidewall. The first and second sidewalls extend from the first surface and toward the trench at an angle. The turbine component includes a cover coupled to the second surface, wherein the cover includes a first end coupled to the first portion and a second end extending into the trench and spaced from the second portion.
Abstract:
Methods for providing a near-surface cooling microchannel in a component include forming a near-surface cooling microchannel in a first surface of a pre-sintered preform, disposing the first surface of the pre-sintered preform onto an outer surface of the base article such that an opening of the outer surface of the base article is aligned with the near-surface cooling microchannel in the first surface of the pre-sintered preform, and, heating the pre-sintered preform to bond it to the base article, wherein the opening of the outer surface of the base article remains aligned with the near-surface cooling microchannel in the first surface of the pre-sintered preform.
Abstract:
At least one turbine component for a gas turbine includes a base component formed by casting and an article. The base component includes a platform. The article on the upper surface of the platform is formed by additive manufacturing. The article has a proximal face sized and shaped to cover at least a portion of the upper surface of the platform of the turbine component and a contoured distal face opposite the proximal face. The contoured distal face has a contour surface serving as at least a portion of a hot gas path surface of the turbine component. The contour surface is arranged and disposed to provide a controlled flow pattern of a working fluid across the contour surface based on a clock mounting location of the turbine component in a turbine.
Abstract:
A coolant delivery system for a component of a gas turbine system includes: a plurality of independent circuits of cooling channels embedded within an exterior wall of the component, each independent circuit of cooling channels including a plurality of headers and a plurality of feed tubes fluidly coupling the plurality of headers to a supply of cooling fluid; and an impingement plate connected to the exterior wall of the component by the plurality of feed tubes of the independent circuits of cooling channels, wherein, in each of the plurality of independent circuits of cooling channels, the cooling fluid flows through the plurality of feed tubes and the plurality of headers into the circuit of cooling channels only in response to a formation of a breach in the exterior wall of the component that exposes at least one of the cooling channels of the circuit of cooling channels.
Abstract:
An abradable seal structure for a gas turbine is formed using binder jetting. The structure may include a first plurality of adjoining cells and a second plurality of adjoining cells. The first plurality of adjoining cells has at least one of a different size, shape, wall thickness, and configuration of adjoining cells than the second plurality of adjoining cells. The abradable seal structure may also have varying porosity across an area thereof.
Abstract:
A method of making a pre-sintered preform, including forming a pre-sintered preform by a binder jet additive manufacturing technique. The binder jet additive manufacturing technique includes depositing a first powder layer including a first powder and a second powder followed by depositing a first binder at a pre-determined location of the first powder layer. The binder jet additive manufacturing technique also includes depositing a second powder layer over at least a portion of the first powder layer followed by depositing a second binder at a pre-determined location of the second powder layer. At least a portion of the first binder and at least a portion of the second binder is cured forming a green part. The green part is then densified to form a pre-sintered preform near net shape component.