Abstract:
A non-naturally occurring microbial organism having a 1,3-butanediol (1,3-BDO) pathway includes at least one exogenous nucleic acid encoding a 1,3-BDO pathway enzyme or protein expressed in a sufficient amount to produce 1,3-BDO. A method for producing 1,3-BDO that includes culturing the this non-naturally occurring microbial organism under conditions and for a sufficient period of time to produce 1,3-BDO.
Abstract:
The invention provides non-naturally occurring microbial organisms comprising a 1,4-butanediol (BDO) pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO and further optimized for expression of BDO. The invention additionally provides methods of using such microbial organisms to produce BDO.
Abstract:
A process of isolating 1,4-butanediol (1,4-BDO) from a fermentation broth includes separating a liquid fraction enriched in 1,4-BDO from a solid fraction comprising cells, removing water from said liquid fraction, removing salts from said liquid fraction, and purifying 1,4-BDO. A process for producing 1,4-BDO includes culturing a 1,4-BDO-producing microorganism in a fermentor for a sufficient period of time to produce 1,4-BDO. The 1,4-BDO-producing microorganism includes a microorganism having a 1,4-BDO pathway having one or more exogenous genes encoding a 1,4-BDO pathway enzyme and/or one or more gene disruptions. The process for producing 1,4-BDO further includes isolating 1,4-BDO.
Abstract:
A non-naturally occurring microbial organism has cyclohexanone pathways that include at least one exogenous nucleic acid encoding a cyclohexanone pathway enzyme. A pathway includes a 2-ketocyclohexane-1 -carboxyl-CoA hydrolase (acting on C-C bond), a 2-ketocyclohexane-l- carboxylate decarboxylase and an enzyme selected from a 2-ketocyclohexane-l-carboxyl-CoA hydrolase (acting on thioester), a 2-ketocyclohexane-l -carboxyl-CoA transferase, and a 2- ketocyclohexane-1-carboxyl-CoA synthetase. A pathway includes an enzyme selected from a 6- ketocyclohex-1-ene-l-carboxyl-CoA hydrolase (acting on C-C bond), a 6-ketocyclohex- 1 -ene- 1 - carboxyl-CoA synthetase, a 6-ketocyclohex-l-ene-l-carboxyl-CoA hydrolase (acting on thioester), a 6-ketocyclohex- 1 -ene- 1 -carboxyl-CoA transferase, a 6-ketocyclohex- 1 -ene- 1 - carboxyl-CoA reductase, a 6-ketocyclohex- 1 -ene- 1 -carboxylate decarboxylase, a 6- ketocyclohex-1 -ene- 1 -carboxylate reductase, a 2-ketocyclohexane-l-carboxyl-CoA synthetase, a 2-ketocyclohexane-l -carboxyl-CoA transferase, a 2-ketocyclohexane-l-carboxyl-CoA hydrolase (acting on thioester), a 2-ketocyclohexane-l -carboxylate decarboxylase, and a cyclohexanone dehydrogenase. A pathway includes an adipate semialdehyde dehydratase, a cyclohexane-1,2- diol dehydrogenase, and a cyclohexane-l,2-diol dehydratase. A pathway includes a 3- oxopimelate decarboxylase, a 4-acetylbutyrate dehydratase, a 3-hydroxycyclohexanone dehydrogenase, a 2-cyclohexenone hydratase, a cyclohexanone dehydrogenase and an enzyme selected from a 3-oxopimeloyl-CoA synthetase, a 3-oxopimeloyl-CoA hydrolase (acting on thioester), and a 3-oxopimeloyl-coA transferase. Each these pathways can include a PEP carboxykinase. A method for producing cyclohexanone includes culturing these non-naturally occurring microbial organisms.
Abstract:
The invention provides non-naturally occurring microbial organisms comprising a 1,4-butanediol (BDO) pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO. The invention additionally provides methods of using such microbial organisms to produce BDO.
Abstract:
The invention provides non-naturally occurring microbial organisms having a 4-hydroxybutyrate pathway and being capable of producing 4-hydroxybutyrate, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4-hydroxybutyrate or related products using the microbial organisms.
Abstract:
The invention provides a non-naturally occurring microbial organism having a muconate pathway having at least one exogenous nucleic acid encoding a muconate pathway enzyme expressed in a sufficient amount to produce muconate. The muconate pathway including an enzyme selected from the group consisting of a beta-ketothiolase, a beta-ketoadipyl-CoA hydrolase, a beta-ketoadipyl-CoA transferase, a beta-ketoadipyl-CoA ligase, a 2- fumarylacetate reductase, a 2-fumarylacetate dehydrogenase, a trans -3-hydroxy-4- hexendioate dehydratase, a 2-fumarylacetate aminotransferase, a 2-fumarylacetate aminating oxidoreductase, a trans -3-amino-4-hexenoate deaminase, a beta-ketoadipate enol-lactone hydrolase, a muconolactone isomerase, a muconate cycloisomerase, a beta-ketoadipyl-CoA dehydrogenase, a 3-hydroxyadipyl-CoA dehydratase, a 2,3-dehydroadipyl-CoA transferase, a 2,3-dehydroadipyl-CoA hydrolase, a 2,3-dehydroadipyl-CoA ligase, a muconate reductase, a 2-maleylacetate reductase, a 2-maleylacetate dehydrogenase, a cis -3-hydroxy-4-hexendioate dehydratase, a 2-maleylacetate aminoatransferase, a 2-maleylacetate aminating oxidoreductase, a cis -3-amino-4-hexendioate deaminase, and a muconate cis/trans isomerase. Other muconate pathway enzymes also are provided. Additionally provided are methods of producing muconate.