Abstract:
A method for hydrocracking a feedstream comprising liquid hydrocarbon by forming a dispersion comprising hydrogen-containing gas bubbles dispersed in the liquid hydrocarbon, wherein the bubbles have a mean diameter of less than about 5 μm, and introducing the dispersion into a hydrocracker comprising hydrocracking catalyst. A method for hydrocracking by subjecting a fluid mixture comprising hydrogen-containing gas and liquid hydrocarbons to a shear rate greater than 20,000 s−1 to produce a dispersion of hydrogen in a continuous phase of the liquid hydrocarbons, and introducing the dispersion into a fixed bed hydrocracking reactor from which a hydrocracked product is removed. A system for hydrocracking a hydrocarbonaceous feedstream including at least one high shear device capable of producing a tip speed of the at least one rotor of greater than 5.0 m/s, and a hydrocracker containing hydrocracking catalyst and comprising an inlet fluidly connected to an outlet of the high shear device.
Abstract:
Steps in the processing of oils derived from plants or vegetables include the degumming, deodorizing and bleaching of the oil before it can be used for further applications. By eliminating one or more of these steps from the processing of the oil, followed by hydrogenating the oil to a specified degree of hydrogenation, the resulting upgraded oils can be incorporated into products having commercial applications. The process uses a high shear mixing device and a hydrogenation catalyst. The process can utilize a single or multiple high shear devices, and utilize renewable oils instead of increasingly scarce petroleum based products. The resulting hydrogenated products may then be utilized in a variety of other commercial applications, such as to render cellulosic products water resistant, provide a coating for numerous cellulosic products, adhesive compositions, ink compositions, firelog compositions, drilling muds or asphalt modifiers.
Abstract:
A method and system for processing naphtha, including a high shear mechanical device. In one embodiment, the method comprises forming a dispersion of gas in a naphtha hydrocarbon liquid in a high shear device prior to introduction in a cracking reactor/furnace. In another instance the system for processing naphtha comprises a high shear device for mechanically shearing hydrocarbons.
Abstract:
A method for removing contaminant from feedwater by forming a dispersion comprising bubbles of a treatment gas in a continuous phase comprising feedwater, wherein the bubbles have a mean diameter of less than about 5 microns and wherein the treatment gas is selected from air, oxygen, and chlorine. A method for removing contaminants from a feedwater by subjecting a fluid mixture comprising feedwater and a treatment gas to a shear rate greater than 20,000 s-1 in a high shear device to produce a dispersion of treatment gas in a continuous phase of the feedwater. A system for treating feedwater to remove contaminants therefrom is also presented, the system comprising at least one high shear mixing device comprising at least one generator comprising a rotor and a stator separated by a shear gap; and a pump configured for delivering feedwater and treatment gas to the high shear mixing device.
Abstract:
Embodiments disclosed herein describe a system for producing enhanced wax alternatives. The system comprises a reactor with at least one inlet and one outlet and at least one high shear mixing device with at least one inlet and one outlet. The at least one outlet of said high shear mixing device is in fluid communication with at least one inlet of said reactor. The high shear mixing device may comprise counter rotating rotors. The high shear mixing device may also comprise at least one catalytic surface. Embodiments disclosed herein also describe a method of producing enhanced wax alternatives. The method comprises (1) providing petroleum wax and base oil; (2) mixing said petroleum wax and base oil with a hydrogen-containing gas in a high shear device to form a feedstock; and (3) hydrogenating said feedstock for a time sufficient to produce enhanced hydrogenated products.
Abstract:
A method of producing volatilized fatty acids by heating a feedstock comprising at least one fat or oil in a reactor under inert vacuum to volatilize fatty acids, and removing volatilized fatty acids from bottoms residue comprising cross-linked oil. A system for stripping fatty acids from triglycerides, the system comprising a reactor, heating apparatus and a vacuum pump capable of pulling a vacuum in the range of from 1 kPa to 50 kPa on the reactor. A system for producing a hydrogenated product including a reactor comprising an inlet for a stream comprising triglycerides, an outlet for volatilized fatty acids, and an outlet for a cross-linked product, heating apparatus, a vacuum pump capable of pulling a vacuum in the range of from 1 kPa to 50 kPa on the reactor, and a hydrogenation reactor, wherein an inlet of the hydrogenation reactor is fluidly connected to the outlet for cross-linked product.
Abstract:
A method of use for a high shear device incorporated into a process or system for the production of acetaldehyde from ethylene as a reactor device is shown to be capable of decreasing mass transfer limitations, by forming a feed stream emulsion, and thereby enhancing the acetaldehyde production process in the system.
Abstract:
A method for producing aniline or toluenediamine is disclosed which comprises forming a dispersion comprising hydrogen gas bubbles dispersed in a liquid medium comprising either nitrobenzene or dinitrotoluene, wherein the hydrogen gas bubbles have a mean diameter less than 1 micron; and subjecting the dispersion to hydrogenation reaction promoting conditions comprising pressure less than about 600 kPa and temperature less than about 200° C., whereby at least a portion of the nitrobenzene or dinitrotoluene is hydrogenated to form aniline or toluenediamine, respectively. A system for carrying out the method is also disclosed.