Abstract:
Verfahren zur Kommunikation in einem drahtlosen Netzwerk, umfassend: das Kommunizieren eines ersten Teils von Daten mit einem drahtlosen Gerät unter Verwendung eines ersten drahtlosen Protokolls; das Kommunizieren eines zweiten Teils der Daten mit dem drahtlosen Gerät zusammenwirkend mit dem Kommunizieren des ersten Teils, unter Verwendung eines zweiten drahtlosen Protokolls, das unterschiedlich zum ersten drahtlosen Protokoll ist; das Überwachen von Zuständen für sowohl das erste und das zweite Protokoll, um zu bestimmen, ob Lasten für das erste und das zweite Protokoll aus dem Gleichgewicht jenseits einer Grenze kommen; und wenn die Lasten für das erste und das zweite Protokoll aus dem Gleichgewicht jenseits einer Grenze kommen, das Neuzuordnen der Daten zu dem ersten und zweiten Protokoll in einem anderen Verhältnis als ein Resultat des Überwachens, bevor mehr Daten über das erste und zweite Protokoll übertragen werden; wobei der erste und zweite Teil mit einer einzelnen Anwendung verbunden ist, das Kommunizieren des ersten Teils gleichzeitig mit dem Kommunizieren des zweiten Teils ausgeführt wird und wobei das Kommunizieren das Kommunizieren von bestimmten Daten über das erste Protokoll und das Kommunizieren derselben bestimmten Daten wieder über das zweite Protokoll umfasst.
Abstract:
Two wireless communication devices 110, 120 may communicate with each other using multiple protocols, PRO A, PRO B, by dividing the data to be communicated into multiple portions, and using each protocol to communicate different portions. The different protocols may include WiFi, WiMAX, LTE and Bluetooth, and may be used simultaneously or concurrently. This multi-protocol technique may be used in several different ways to provide different types of advantages in wireless communications such as switching between first and second protocols based on factors such as quality or available capacity. Data of a first resolution may be transmitted over the first protocol whilst additional data for a higher resolution over the second protocol. A contention-based protocol may be given higher priority than a scheduled protocol.
Abstract:
In some demonstrative embodiments, a simultaneous transmit and receive (STR) transceiver may include a receiver; a transmitter; a Radio Frequency (RF) echo cancellation module to generate an analog echo cancellation signal to be applied to a received RF signal via the receiver based on a transmitted RF signal via the transmitter; and a digital baseband module. The RF echo cancellation module may include a plurality of tap modulators to modulate a plurality of delayed taps of the transmitted RF signal. A tap modulator may include a plurality of phase shifters to generate a plurality of phase-shifted signals by applying a plurality of phase shifts to a delayed tap; and a plurality of multipliers to multiply the plurality of phase-shifted signals with a respective plurality of weights. The digital baseband module may determine the plurality of weights based on a plurality of subcarriers of a digital frequency-domain signal corresponding to the transmitted RF signal.
Abstract:
An array of antenna elements is energized as a plurality of concentric rings of the antenna elements, each of the concentric rings energized with a respective signal from a first transceiver, the signal having a continuously varying progressive phase between the antenna elements to generate n respective electromagnetic orbital angular momentum (OAM) beams each having a respective OAM mode m where m ranges from 0 to ± n. The beams are contemporaneously generated orthogonal to each other. The circumferential phase profile of the signal for a concentric ring of ± antenna elements is 2Àm radians, and the progressive phase difference between each of the ± antenna elements is 2Àm/± radians. The first transceiver transmits the beams to a second transceiver which demodulates them and sends demodulation quality information to the first transceiver for determination of whether to transmit the beams in full multiplexing, full diversity or partial diversity.
Abstract:
At least one neighbor cell is identified by a base station by detecting a synchronization signal of the at least one neighbor cell. A received signal power, such as a Reference Signal Received Power (RSRP) or a Reference Signal Received Quality (RSRQ), or a combination thereof, is also measured from the at least one neighbor cell. Identifying information and the received signal power of the at least one neighbor cell is then communicated to a network entity of the wireless network. Information is received from the network entity indicating whether the base station can enable a reconfiguration of the allocation of uplink and downlink subframes used in the cell of the base station. Based on the information received from the network entity, the base station enables a reconfiguration of the allocation of uplink and downlink subframes used in the cell.
Abstract:
The present invention discloses a method including: storing identification information or location information for a handover previously performed by a mobile system; estimating when the mobile system enters within a coverage area of a target femtocell; recognizing the coverage area based on the identification information or the location information; and scanning for the target femtocell prior to handover.
Abstract:
An integrated WLAN/WWAN Radio Access Technology (RAT) architecture is described in which signaling used to control the integration of the WLAN/WWAN architecture is performed over the Radio Resource Control (RRC) plane. The integrated architecture may allow for User Equipment (UE) assistance in cell selection and traffic steering. In particular, UE-assisted RRC signaling is described for managing inter-RAT session transfers and secondary cell (SCell) selection.