Abstract:
A wireless communication device includes a first cyclic redundancy check (CRC) coder configured to generate a first block of CRC parity bits on a transport block, the first CRC coder attaching the first block of CRC parity bits to the transport block, a segmenting entity having an input coupled to the first CRC coder, the segmenting entity configured to segment the transport block into multiple code blocks after attaching, a second CRC coder configured to generate a second block of CRC parity bits on each code block, the second CRC coder attaching a second block of CRC parity bits to each code block, the second block of CRC parity bits attached to each code block is the second block of CRC parity bits generated based on the corresponding code block, the first block of CRC parity bits based on a first generator polynomial D 24 +D 23 +D 18 +D 17 +D 14 +D 11 +D 10 +D 7 +D 6 +D 5 +D 4 +D 3 +D+1 and the second block of CRC parity bits based on a second generator polynomial D 24 + D 23 + D 6 + D 5 + D + 1, and a channel encoder configured to encode each of the code blocks including the attached second block of CRC parity bits.
Abstract:
Power control in a spread-spectrum communication system takes place by dynamically adjusting the step-down size of a power control threshold (407-415) based on an acquired number of poor-quality frames (405). The step-down size of the threshold is increased or decreased depending on an amount of frame erasures detected by the system (407-415). Additionally, full-rate or sub-rate frame quality is used to dynamically adjust the step-down size of a power control threshold.
Abstract:
During operation radio frames are divided into a plurality of subframes. Data is transmitted over the radio frames within a plurality of subframes, and having a frame duration selected from two or more possible frame durations.
Abstract:
A code division multiple access (CDMA) communication system reduces system self-interference and enhances system capacity by making rate selection decisions for individual speech encoders in concert with other speech encoders. The system utilizes perceptually weighted error metrics (401) as input into a rate controller (404) which determines and provides selected rates (402) back to the encoders (105). The system provides optimum voice quality and system capacity in that it allows specific encoders to decrease their rate, which improves capacity, as necessary while allowing other encoders to maintain their rates. This prevents needless degradation in voice quality at those times when system capacity needs to be temporarily increased.
Abstract:
A receiver (500) utilizes parameters generated by a Viterbi decoder (530) to determine one of a plurality of coding rates in which user information is transmitted. The receiver (500) combines the parameters in a predetermined manner, the result of which is a detection statistic (dij). By utilizing the detection statistic (dij), the coding rate at which user information is transmitted is accurately determined.
Abstract:
A code division multiple access (CDMA) communication system reduces system self-interference and enhances system capacity by making rate selection decisions for individual speech encoders in concert with other speech encoders. The system utilizes perceptually weighted error metrics (401) as input into a rate controller (404) which determines and provides selected rates (402) back to the encoders (105). The system provides optimum voice quality and system capacity in that it allows specific encoders to decrease their rate, which improves capacity, as necessary while allowing other encoders to maintain their rates. This prevents needless degradation in voice quality at those times when system capacity needs to be temporarily increased.