Abstract:
A sensing insert device (100) is disclosed for measuring a parameter of the muscular-skeletal system. The sensing insert device (100) can be temporary or permanent. Used intra-operatively, the sensing insert device (100) comprises an insert dock (202) and a sensing module (200). The sensing module (200) is a self-contained encapsulated measurement device having a contacting surface that couples to the muscular-skeletal system. The sensing module (200) comprises one or more sensors (303), electronic circuitry (307), and communication circuitry (320). The electronic circuitry (307) operatively couples to the one or more sensors (303) to measure the parameter. The communication circuitry (320) couples to the electronic circuitry (307) to wirelessly transmit measurement data. The communication circuitry (320) comprises a data packetizer (422), a cyclic redundancy check circuit (413), a transmitter (416), a matching network (414), and an antenna (412). The sensing insert device (100) when inserted allows movement of the muscular-skeletal system.
Abstract:
Apparatus and method provide flexibility in generating a stimulation waveform to an electrode of an Implantable Neuro Stimulator (INS). The stimulation waveform is synthesized for each rate period interval. Each rate period interval is partitioned into time intervals, during which stimulation pulses, recharging, and time duration delays may be induced. With the embodiment of the invention, a second stimulation pulse, having different electrical characteristics than a first stimulation pulse, may be generated during the rate period interval. An embodiment utilizes apparatus comprising a waveform controller and a waveform generator that are controlled by the waveform controller. The waveform controller uses waveform parameters to instruct the waveform generator to form stimulation pulses. Any of the components may be adjusted or deleted in the generation of the stimulation waveform. The embodiment enables any of the associated waveform parameters to be updated at the waveform controller in order to alter the stimulation waveform.
Abstract:
Techniques for operation of neurostimulation or drug delivery devices to adjust treatment therapy during specific times of the day are disclosed. Advantageously, battery usage and/or drug dosage can be reduced during periods when treatment therapy need not be provided. Furthermore, tolerance of the patient toward the neurostimulation or drug delivery that may develop from the regular application of electrical stimulation or treatment therapy may be reduced or slowed. In one embodiment, a device includes a real time clock for shutting off the device in accordance with a preset schedule. The device can be configured to turn off after the patient has fallen asleep and turns on right before the patient awakes. The device may include a sensor for sensing symptoms related to a disorder being treated and treatment therapy can be adjusted accordingly.
Abstract:
In the embodiment of the invention, apparatus and method provide flexibility in generating a stimulation waveform (that comprises at least a stimulation pulse) to an electrode of an Implantable Neuro Stimulator (INS). The waveform is synthesized for each rate period interval. A portion of the rate period interval is identified, in which the portion comprises at least one phase. During each phase, the stimulation waveform is synthesized by a waveform controller and a waveform generator. The waveform controller utilizes waveform parameters, e.g. the initial value, final value, and step time duration, to form a digital signal to the waveform generator. The waveform generator utilizes the digital signal to form the synthesized waveform.
Abstract:
The present invention takes the form of a current limiting apparatus and method for limiting current flow, induced when the level of an external signal is greater than an external signal threshold signal level, in a conductive loop formed by a medical device implanted within a living organism having electrically excitable tissue. The system includes an implantable pulse generator (IPG) system having a housing, a signal generator disposed in the housing that generates an electrical signal, and at least one lead extending from the housing to convey electrical signal to the patient. To limit the induced current flow, the IPG includes current limiting componentry, an impedance increasing element, and/or alternating current blocking elements. These components provide an alternating current impedance path to the electrical ground from a lead coupled to the capacitive element. Also disclosed are techniques for reducing the effective surface area of the current inducing loop caused by the IPG system.
Abstract:
A sensing insert device (100) is disclosed for measuring a parameter of the muscular-skeletal system. The sensing insert device (100) can be temporary or permanent. The sensing module (200) is a self-contained encapsulated measurement device having at least one contacting surface that couples to the muscular-skeletal system. The sensing module (200) comprises one or more sensing assemblages (2302), electronic circuitry (307), an antenna (2302), and communication circuitry (320). The sensing assemblages (2302) are between a top plate (1502) and a bottom plate (1504) in a sensing platform (121). The bottom plate (1504) is supported by a ledge (1708) on an interior surface of a sidewall (1716) of a housing (1706). A cap (1702) couples to top plate (1502). The sensing assemblage (2302) includes one of a piezo-resistive sensor, MEMS sensor, strain gauge, or mechanical sensor when a force, pressure, or load is applied to the top plate (1502).
Abstract:
At least one embodiment is directed to a tracking system for the muscular-skeletal system. The tracking system can identify position and orientation. The tracking system can be attached to a device or integrated into a device. In one embodiment, the tracking system couples to a handheld tool. The handheld tool with the tracking system and one or more sensors can be used to generate tracking data of the tool location and trajectory while measuring parameters of the muscular-skeletal system at an identified location. The tracking system can be used in conjunction with a second tool to guide the second tool to the identified location of the first tool. The tracking system can guide the second tool along the same trajectory as the first tool. For example, the second tool can be used to install a prosthetic component at a predetermined location and a predetermined orientation. The tracking system can track hand movements of a surgeon holding the handheld tool within 1 millimeter over a path less than 5 meters.
Abstract:
A sensing insert device (100) is disclosed for measuring a parameter of the muscular-skeletal system. The sensing insert device (100) can be temporary or permanent. The sensing module (200) is a self-contained encapsulated measurement device having at least one contacting surface that couples to the muscular-skeletal system. The sensing module (200) comprises one or more sensing assemblages (1802), electronic circuitry (307), an antenna (2302), and communication circuitry (320). The sensing assemblages (1802) are between a top plate (1502) and a bottom plate (1504) in a sensing platform (121). The bottom plate (1504) is supported by a ledge (1708) on an interior surface of a sidewall (1716) of a housing (1706). A cap (1702) couples to top plate (1502). The cap (1702) is adhesively coupled to the housing (1706). The adhesive is flexible allowing movement of the cap (1702) when a force, pressure, or load is applied thereto.
Abstract:
An orthopedic surgical spine measurement system comprises a first tool, a second tool, and a remote system. The first tool is a distractor having a plurality of load sensors for measuring load magnitude and position of load of a distracted region of the spine. The first tool and second tool also includes circuitry to measure a position and trajectory. The remote system receives data from the first tool and can display the parameter being measured and the position and trajectory of the first tool. A second tool holds a spine component. The remote system supports placement of the spine component by comparing the position and trajectory of the second tool to the path of the first tool. The remote system and second tool can provide visual, audible, or haptic feedback to support directing the second tool similarly to the first tool.
Abstract:
A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device.