Abstract:
A method of wireless communication includes configuring a plurality of remote radio heads (RRHs) to prevent position location reference signal (PRS) transmissions on the same subframes where the macro eNodeB transmits PRS. The configured RRHs each have a same physical cell identity (PCI) as the macro eNodeB. The RRHs communicating in accordance with the configuration.
Abstract:
Techniques are provided for control signaling and channel selection in cognitive Long Term Evolution (LTE). In one example, there is provided a method, operable by a mobile entity, that involves receiving, on a licensed channel, broadcasted channel usage information regarding at least one unlicensed channel used by one or more network nodes. The method further involves: performing a cell search procedure based at least in part on the channel usage information to select a given network node among the one or more network nodes; determining at least one random access parameter to be used in establishing wireless communication with the given network node, the at least one random access parameter being associated with a characteristic of the user device and determining a preferred downlink channel.
Abstract:
Certain aspects of the present disclosure propose methods for protecting channel quality indicator (CQI) modulation symbols in a subframe (e.g., a localized frequency division multiplexing (LFDM) subframe). For some aspects, a timing adjustment method may be utilized to adjust time of a UE with respect to an eNodeB. The timing adjustment method may introduce a positive time offset to be used for reducing time mismatch between the UE and the eNodeB. In another aspect, a buffer may be used at the eNodeB to store symbols received by the eNodeB before removing the cyclic prefix information from the subframe. The eNodeB may use the stored symbols and an artificial time delay to ensure that the CQI information is protected. For some aspects, the CQI modulation symbols may not be located at the beginning of an LFDM symbol.
Abstract:
Techniques for estimating and reporting channel quality indicator (CQI) are disclosed. Neighboring base stations may cause strong interference to one another and may be allocated different resources, e.g., different subframes. A UE may observe different levels of interference on different resources. In an aspect, the UE may determine a CQI for resources allocated to a base station and having reduced or no interference from at least one interfering base station. In another aspect, the UE may determine multiple CQI for resources of different types and associated with different interference levels. For example, the UE may determine a first CQI based on at least one first subframe allocated to the base station and having reduced or no interference from the interfering base station(s). The UE may determine a second CQI based on at least one second subframe allocated to the interfering base station(s).
Abstract:
According to certain aspects, resource blocks used for pysical downlink shared channel (PDSCH) transmissions may be allocated in a manner to manage interference in neighboring cells. According to certain aspects, one or more guard RBs may be utilized when transmitting PDSCH in a first cell an effort to reduce interference by tranmissions in a second cell.
Abstract:
In a wireless communication system unused resource elements are utilized to transmit additional pilot and control signals. The additional pilot and control signals may mitigate the impact of interference. The unused resource elements may be in a downlink pilot timeslot (DwPTS) in a time division duplex system.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which information regarding use of a CDM and FDM structure for multiplexing data on a data channel for uplink for at least one subframe is determined. In addition, the data is multiplexed using the CDM/FDM structure for the at least one subframe based on the determined information.
Abstract:
A method, an apparatus, and a computer program product for receiving a signal including components from a plurality of cells, estimating a channel from the received signal using one or more channel estimation schemes, removing a component signal using the estimated channel from the received signal to generate a processed signal and detecting a residual signal in the processed signal.
Abstract:
Embodiments disclosed herein relate to preamble configuration in wireless communication systems (e.g., UHDR-DO type systems). Disclosed embodiments disclose receiving a plurality of information bits, generating a plurality of preamble codewords based on a determined a set of monitored MAC_IDs, correlating the information bits with each of the plurality of preamble codewords, determining if a maximum correlation value exceeds a threshold, and transmitting at least one of the preamble codewords if the threshold is exceeded.
Abstract:
Techniques for performing decision feedback equalization are described. A feed-forward filter response and a feedback filter response are derived based on a channel estimate and a reliability parameter and further without constraint on the feedback filter response or with a constraint of no feedback for an on-time sample. The reliability parameter is indicative of the reliability of the feedback used for equalization and may be frequency dependent or frequency invariant. Different feed-forward and feedback filter responses may be derived with different constraints on the feedback filter and different assumptions for the reliability parameter. Equalization is performed with the feed-forward and feedback filter responses. If equalization is performed for multiple iterations then, for each iteration, the reliability parameter may be updated, the feed-forward and feedback filter responses may be derived based on the updated reliability parameter, and equalization may be performed with the filter responses for the iteration.