Abstract:
A system is provided for transmitting information through a speech codec (inband) such as found in a wireless communication network. A modulator transforms the data into a spectrally noise-like signal based on the mapping of a shaped pulse to predetermined positions within a modulation frame, and the signal is efficiently encoded by a speech codec. A synchronization sequence provides modulation frame timing at the receiver and is detected based on analysis of a correlation peak pattern. A request/response protocol provides reliable transfer of data using message redundancy, retransmission, and/or robust modulation modes dependent on the communication channel conditions.
Abstract:
A system is provided for transmitting information through a speech codec (in-band) such as found in a wireless communication network. A modulator transforms the data into a spectrally noise-like signal based on the mapping of a shaped pulse to predetermined positions within a modulation frame, and the signal is efficiently encoded by a speech codec. A synchronization sequence provides modulation frame timing at the receiver and is detected based on analysis of a correlation peak pattern. A request/response protocol provides reliable transfer of data using message redundancy, retransmission, and/or robust modulation modes dependent on the communication channel conditions.
Abstract:
A system is provided for transmitting information through a speech codec (in-band) such as found in a wireless communication network. A modulator transforms the data into a spectrally noise-like signal based on the mapping of a shaped pulse to predetermined positions within a modulation frame, and the signal is efficiently encoded by a speech codec. A synchronization sequence provides modulation frame timing at the receiver and is detected based on analysis of a correlation peak pattern. A request/response protocol provides reliable transfer of data using message redundancy, retransmission, and/or robust modulation modes dependent on the communication channel conditions.
Abstract:
A coax network unit (CNU) coupled to a coax line terminal (CLT) receives a plurality of orthogonal frequency-division multiplexing (OFDM) symbols from the CLT and identifies a start-of-frame delimiter on a physical-layer (PHY) control channel in the plurality of OFDM symbols. The PHY control channel includes a plurality of contiguous subcarriers. The CNU decodes one or more forward error correction (FEC) code words that follow the start-of-frame delimiter on the PHY control channel. The one or more FEC code words provide PHY control data that include information specifying a structure of a PHY frame that includes the plurality of OFDM symbols.
Abstract:
A system is provided for transmitting information through a speech codec (inband) such as found in a wireless communication network. A modulator transforms the data into a spectrally noise-like signal based on the mapping of a shaped pulse to predetermined positions within a modulation frame, and the signal is efficiently encoded by a speech codec. A synchronization sequence provides modulation frame timing at the receiver and is detected based on analysis of a correlation peak pattern. A request/response protocol provides reliable transfer of data using message redundancy, retransmission, and/or robust modulation modes dependent on the communication channel conditions.
Abstract:
A system is provided for transmitting information through a speech codec (inband) such as found in a wireless communication network. A modulator transforms the data into a spectrally noise-like signal based on the mapping of a shaped pulse to predetermined positions within a modulation frame, and the signal is efficiently encoded by a speech codec. A synchronization sequence provides modulation frame timing at the receiver and is detected based on analysis of a correlation peak pattern. A request/response protocol provides reliable transfer of data using message redundancy, retransmission, and/or robust modulation modes dependent on the communication channel conditions.
Abstract:
A system is provided for transmitting information through a speech codec (inband) such as found in a wireless communication network. A modulator transforms the data into a spectrally noise-like signal based on the mapping of a shaped pulse to predetermined positions within a modulation frame, and the signal is efficiently encoded by a speech codec. A synchronization sequence provides modulation frame timing at the receiver and is detected based on analysis of a correlation peak pattern. A request/response protocol provides reliable transfer of data using message redundancy, retransmission, and/or robust modulation modes dependent on the communication channel conditions.