Abstract:
Exemplary, embodiments are directed to detection and validation of wirelessly chargeable devices positioned within a charging region of a wireless power transmitter. A device may include a wireless power transmitter, (204) configure detect a change in at least one parameter at the transmitter. The transmitter may further be configured to determine whether at least one valid chargeable device (350) is positioned within a charging region of the transmitter upon detecting the change in the at least one parameter.
Abstract:
Exemplary embodiments are directed to variable power wireless power transmission. A method may include conveying wireless power to a device at a first power level during a time period. The method may further include conveying wireless power to one or more other devices at a second, different power level during another time period.
Abstract:
A uniform magnetic field may provide better performance in wireless power transmitters due to smaller impedance variations in an output of a power amplifier of a wireless power transmitter and also allow for wireless power transmitter pads to be thinner. One aspect of the disclosure provides a device for wireless power transfer. The device comprises a substantially planar transmit antenna that is configured to generate a magnetic field. The device also comprises a pad having a charging surface. At least a portion of the transmit antenna is disposed in the pad. The device also comprises a ferromagnetic material having a shape and a position relative to the transmit antenna. At least one of the shape or position of the ferromagnetic material, or a combination thereof, is selected to modify a distribution of the magnetic field at the charging surface.
Abstract:
Exemplary embodiments are directed to detection and validation of wirelessly chargeable devices positioned within a charging region of a wireless power transmitter. A device may include a detection circuit comprising an oscillator, the detection circuit configured to detect a change in a frequency of the oscillator. The device may also include a wireless power transmitter configured to determine whether a chargeable device is positioned within a charging region of the transmitter upon the detection circuit detecting the change in the frequency of the oscillator, wherein the transmitter further configured to be selectively electrically isolated from the detection circuit.
Abstract:
Exemplary embodiments are directed to variable power wireless power transmission. A method may include conveying wireless power to a device at a first power level during a time period. The method may further include conveying wireless power to one or more other devices at a second, different power level during another time period.