Abstract:
In a procedure for determining distance (or angle) between a pair of electronic devices wirelessly connected to one another, a current session may be temporarily suspended on request and thereafter the current session may be resumed. Temporary suspension and resumption of the current session may, for example, eliminate starting a new session between the pair of electronic devices and repeating a determination of parameters that were initially agreed upon in the current session. Temporary suspension of a current session may be signaled wirelessly, by one electronic device to the other electronic device, for example, by setting a specific value in a specific field, to signal that the current session is to be paused now, in a frame or message transmitted from the pausing device to the to-be-paused device. The current session may be resumed without repeating determination of the initially-agreed upon parameters, by transmitting a frame to initiate measurement exchange.
Abstract:
In a particular aspect, a method includes receiving, at a long-term evolution (LTE) circuitry of wireless device from a wireless local area network (WLAN) circuitry of the wireless device while the LTE circuitry has control of at least one antenna of the wireless device, a request for control of the at least one antenna. Communications by the LTE circuitry using the at least one antenna corresponds to a first frequency band, communications by the WLAN circuitry using the at least one antenna correspond to a second frequency band, and the first frequency band at least partially overlaps the second frequency band. The method further includes sending a response from the LTE circuitry to the WLAN circuitry based on data included in the request.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, using a modulation and coding scheme (MCS) value as a factor for guidance. According to one aspect, the device may be in a reception mode. While in a first power mode, the device may receive control information for incoming data that is being transmitted via a transmission frame. The control information may be located in a first portion of the frame with the data following in a second portion of the frame. The control information may include or otherwise indicate an MCS value corresponding to the MCS applied to the incoming data. Based on the MCS value, the device may be adaptively switched to a second power mode for receiving the incoming data.
Abstract:
This disclosure includes systems and methods for determining the location of each of a plurality of STAs of a WLAN where an AP measures the round-trip time (RTT) and the angle of arrival (AOA) to each STA from implicit packet exchange, such as data frame and ACK frame. The AP may then report the RTT and AOA measurements to each STA using a dedicated beacon information element (IE) which multicasts RTT and AOA measurements to the STAs. By employing an additional parameter, namely, angle of arrival AOA, a single AP may compute the two-dimensional location of each associated STA. Further, another beacon IE may multicast mapping of the AIDs to MAC addresses so that the associated STAs can understand such mapping for STAs in a network so that one STA may know the location of other STAs. Encryption may be employed to achieve privacy.
Abstract:
A method of saving power in a wireless network can include determining a plurality of stations associated with an AP. The AP can create station groups using group selection logic. Notably, the group selection logic is transparent to the plurality of stations. A plurality of TIMs can then be sent, each TIM allowing only one station group access to a channel during a predetermined time interval, such as a beacon interval. In another method, a station can determine its sleep duration based on at least one of first information from the TIM to generate random sleep duration, second information regarding previous operation of the station, and third information regarding a status of the station. The first, second, and third information can include the number of stations associated with the AP and having buffered data based on the TIM, historical collisions, and power status.