Abstract:
A method is disclosed, comprising determining a time slot for receiving a backhaul link assignment according to an assignment protocol, wherein the assignment protocol defines an access link latency between an access link resource assignment and an access link communication over the access link resource assignment, and receiving the backhaul link assignment from one or more access points during the time slot.
Abstract:
Various systems and methods for network management are disclosed. In one embodiment, a network management system comprises a receiver for receiving data from a plurality of entities, including base stations and/or subscriber handsets, a processor for generating a network map or a recommendation based on the received data, a display device for displaying the network map or recommendation, and a transmitter for transmitting instructions based on the recommendation.
Abstract:
A method for facilitating multiple-antenna wireless communication, comprising: employing a wired or wireless communication interface to obtain data identifying a WCD and a potential wireless partner of the WCD; employing a processor to generate indexing parameters facilitating distributed processing for multiple-antenna communication for the WCD or wireless partner; mapping the respective indexing parameters to respective instructions for independent implementation of the communication at the WCD or wireless partner; identifying respective wireless channels and resources for the WCD or wireless partner to be employed in implementing the communication; and employing the communication interface to forward the indexing parameters to the WCD.
Abstract:
Systems and methods are described that facilitate evaluating conditions of nodes (e.g., access points, access terminals, etc.) in a wireless communication environment to determine a level of disadvantage for a given node relative to other nodes. A first node may receive a resource utilization message (RxRUM) and may determine a level of disadvantage for a node that sent the RxRUM. The first node may then compare its own level of disadvantage to the sending node in order to permit a determination of an appropriate course of action in response to the RxRUM.
Abstract:
Systems and methods are disclosed that facilitate wireless communication using resource utilization messages (RUMs), in accordance with various aspects. A RUM may be generated for a first node, such as an access point or an access terminal, to indicate that a first predetermined threshold has been met or exceeded. The RUM may be weighted to indicate a degree to which a second predetermined threshold has been exceeded. The first and/or second predetermined thresholds may be associated with various parameters associated with the node, such as latency, throughput, data rate, spectral efficiency, carrier-to-interference ratio, interference-over-thermal level, etc. The RUM may then be transmitted to one or more other nodes to indicate a level of disadvantage experienced by the first node.
Abstract:
Systems and methodologies are described that facilitate determining when and whether to implement a sender-based data packet scheduling mechanism or a receiver-based data packet scheduling mechanism based on one or mode scheduling factors. For example, a sending node and a receiving node may communicate to permit a determination of which node is more capable of performing the scheduling tasks, and a corresponding scheduling technique may be selected and executed. According to an aspect, an amount of data downloading may be compared to an amount of data uploading at each node, and a sender-based scheduling protocol may be performed when the amount of data uploading is greater than the amount of downloading data.
Abstract:
Techniques are described for wireless communication. A first method may include inserting, in a first transmission using a first radio access technology (RAT), a channel occupancy identifier for a second transmission using a second RAT. The first method may also include transmitting the first transmission having the channel occupancy identifier over an unlicensed radio frequency spectrum band. A second method may include receiving, at a receiver operated using a first RAT, a channel occupancy identifier for a transmission using a second RAT. The channel occupancy identifier may be received over an unlicensed radio frequency spectrum band. The second method may also include decoding the channel occupancy identifier to identify a backoff period, and refraining from accessing the unlicensed radio frequency spectrum band using the first RAT based at least in part on the identified backoff period.