Abstract:
Handover parameter settings are automatically adapted in access points in a system to improve handover performance. Reactive detection techniques are employed for identifying different types of handover-related failures and adapting handover parameters based on this detection. Messaging schemes are also employed for providing handover-related information to access points. Proactive detection techniques also may be used for identifying conditions that may lead to handover-related failures and then adapting handover parameters in an attempt to prevent such handover-related failures. Ping-ponging may be mitigated by adapting handover parameters based on analysis of access terminal visited cell history acquired by access points in the system. In addition, configurable parameters (e.g., timer values) may be used to detect handover-related failures.
Abstract:
A backup page is provided for a node that misses a page. In some aspects, a first type of access point in a system provides a backup page for an access terminal that is idling on a second of access point in the system in the event the access terminal misses a page by the second of access point in the system. An access point of the first type may page the access terminal according to a first paging schedule while an access point of the second type may page the access terminal according to a second paging schedule. In some aspects an access point of the first type (e.g., a macro node) provides service over a macro coverage area and an access point of the second type (e.g., a femto node) provides service over a smaller coverage area and/or provides restricted service.
Abstract:
An access point is configured based on acquired information. An access point may be configured based on the configuration(s) of at least one other access point. An identifier to be transmitted by an access point may be selected based on the identifier(s) transmitted by at least one other access point. An access point may configure itself with assistance from a configuration server. For example, the access point may send information such as the location of the access point to a configuration server and the configuration server may respond with a list of neighboring access points for that access point. A configuration server may provide configuration information to an access point based on the location of the access point. A configuration server also may direct an access point to a different configuration server.
Abstract:
Provisioning and access control for communication nodes involves assigning identifiers to sets of nodes where the identifiers may be used to control access to restricted access nodes that provide certain services only to certain defined sets of nodes. In some aspects provisioning a node may involve providing a unique identifier (402) for sets of one or more nodes such as restricted access points (102, 104) and access terminals (106, 108) that are authorized to receive service from the restricted access points (102, 104). Access control may be provided by operation of a restricted access point and/or a network node (110). In some aspects, provisioning a node involves providing a preferred roaming list for the node. In some aspects, a node may be provisioned with a preferred roaming list through the use of a bootstrap beacon.
Abstract:
A set of wireless relay nodes are managed to facilitate inter-node routing of packets in the set. In some aspects, unique identifiers are defined for the wireless relay nodes to facilitate routing packets within the set. In some aspect a routing table is provided to each of the wireless relay nodes, wherein the routing table identifies each wireless relay node in the set and a next-hop entity for each of these wireless relay nodes. Each of the wireless relay nodes may then define a forwarding table based on the routing table.
Abstract:
Systems and methodologies are described that facilitate attaching cell relays to a wireless network. During the attachment procedure, a relay eNB can request assignment of an identifier, or a portion thereof, from a donor eNB for subsequent packet routing to the relay eNB. This can occur through one or more intermediary relay eNBs, where present. Donor eNB can assign an identifier or portion thereof (or confirm/deny an explicit identifier request from the relay eNB) and can forward establishment information downstream to the relay eNB. Donor eNB and intermediary relay eNBs, where present, can store the identifier for subsequent use in routing packets to the relay eNB. The identifier can be a terminal endpoint identifier (TEID) utilized in a tunneling protocol, a relay identifier utilized in a relay protocol, and/or the like.
Abstract:
A communication node determines that radio link failure occurred during connected state mobility of an access terminal and reports the radio link failure to another communication node. For example, a target access point may determine that radio link failure occurred during handover of an access terminal and send a radio link failure report message to the access point that was previously serving the access terminal or to some other node (e.g., a network node). In the first case, the serving access point may adjust mobility parameters based on this radio link failure information and, optionally, other reported radio link failure information. In the second case, the other node may send a radio link failure report message to the serving access point, or the other node may adjust mobility parameters based on this radio link failure information (and, optionally, other reported radio link failure information) and send the adjusted mobility parameters to the serving access point.
Abstract:
A method for synchronizing a wireless communication system is disclosed. A silence duration for a base station is determined based on the time required for a neighbor base station to obtain or maintain synchronization. All transmissions from the base station are ceased for the silence duration. Multiple base stations level may cease transmissions at the same time, thus mitigating interference.
Abstract:
Methods and apparatus for controlling transmission of a base station, such as a Femto cell, based on the determined quality of a backhaul connection to a network are disclosed. In particular, a quality of a backhaul connection of a base station to a node in a communication network is determined. Based on this quality determination, transmission from the base station is either limited or stopped when the determined quality fails to meet a predefined condition. The degradation in quality of the backhaul connection, for example, affects the ability of the base station to offer sufficient service to access terminals. By limiting or stopping wireless transmission of the base station when the backhaul quality is degraded, access terminals either currently accessing the base station or attempting to connect to the base station can then more efficaciously hand off to another base station or access point.