Abstract:
An electrically conductive and corrosion resistant graphene-based coating composition, including a binder, high-pressure airless-sprayed expanded graphene stacks, carbon fibers, and a dispersing agent, wherein the graphene-based coating composition has an electrical conductivity of at least 2 S/cm and a pull-off adhesion of at least 2 MPa.
Abstract:
The present disclosure provides compositions including a conductive polymer; and a fiber material comprising one or more metals disposed thereon. The present disclosure further provides a component, such as a vehicle component, including a composition of the present disclosure disposed thereon. The present disclosure further provides methods for manufacturing a component including: contacting a metal coated fiber material with an oxidizing agent and a monomer to form a first composition comprising a metal coated fiber material and a conductive polymer; and contacting the first composition with a polymer matrix or resin to form a second composition.
Abstract:
Compositions are described for protecting a metal surface against corrosion. The composition includes a corrosion-inhibiting particle. The corrosion inhibiting particle may be usable in an epoxy resin-based coating or an olefin resin-based coating. The particle may include a core and a protectant. The core may include a water soluble corrosion inhibitor. The protectant may be disposed on at least a portion of a surface of the core and may be covalently or ionically bonded to a thiol group of the corrosion inhibitor. The protectant may be configured to reduce reaction between the core and the epoxy resin or the olefin resin. Methods of making the compositions are also disclosed.
Abstract:
Disclosed are curved electrochromic devices comprising an electrochromic apparatus disposed between first and second curved layers of transparent material, and the first and second curved layers have exterior and inner surfaces, wherein the inner surfaces face the electrochromic apparatus. Also disclosed are processes for manufacturing the disclosed bubble visors.
Abstract:
The present disclosure provides compositions including a carbon fiber material comprising one or more of an acyclic olefin group or a thiol disposed thereon; and a thermosetting polymer or a thermoplastic polymer. The present disclosure further provides metal substrates including a composition of the present disclosure disposed thereon. The present disclosure further provides vehicle components including a metal substrate of the present disclosure. The present disclosure further provides methods for manufacturing a vehicle component, including contacting a carbon fiber material with a carbon-containing zinc-titanium or a thiol to form a coated carbon fiber material; and mixing the coated carbon fiber material with a thermosetting polymer or a thermoplastic polymer to form a composition. Methods can further include depositing a composition of the present disclosure onto a metal substrate.
Abstract:
System and method for removing copper species from a hydraulic fluid are described. The system includes a filter including a thiol resin. The filter is configured to be in fluid communication with the hydraulic fluid of the hydraulic system.
Abstract:
Compositions are described for protecting a metal surface against corrosion. The composition includes a corrosion-inhibiting particle. The corrosion inhibiting particle may be usable in an epoxy resin-based coating or an olefin resin-based coating. The particle may include a core and a protectant. The core may include a water soluble corrosion inhibitor. The protectant may be disposed on at least a portion of a surface of the core and may be covalently or ionically bonded to a thiol group of the corrosion inhibitor. The protectant may be configured to reduce reaction between the core and the epoxy resin or the olefin resin.
Abstract:
A method providing conductive coatings is provided. A dopant layer with a plasma deposited conjugated polymer is provided. Conductive, conjugated polymer coatings are also provided.