Abstract:
A shutdown controller for a wind turbine comprises, to improve the estimation of a state of the wind turbine, at least two sensors being adapted to provide sensor data significant for different mechanical states in the wind turbine. The controller can provide an estimated state of the wind turbine based on the sensor data from the at least two sensors and compare the state of the wind turbine with a predefined detection limit to provide a shutdown signal if the estimated state is outside the detection limit.
Abstract:
A method for controlling a wind turbine rotor during a stop process by pitching the rotor blades fast, e.g. with an angular rate of 10-15°/s to a no-thrust position, after which the rotor blades are pitched to maintain the no-thrust or a thrust against the direction of the pendulum movement of the tower for a while to prevent the aerodynamic thrust from aggravating the pendulum movement of the tower. With this control strategy, the bending moments of the tower root are minimized, leading to avoidance of wind turbine tower failure, to prolongation of the life time for a wind turbine tower and the possibility of erecting wind turbine towers of less reinforcement at the tower root.