Abstract:
The present invention features a device for treating liquid including a containment member comprised of rigid porous polymer configured to form a containment space. Nonbonded particulate media is disposed in the space in contact with and contained by the containment member. Pores in the containment member are characterized by pore paths and pore sizes effective to permit flow of liquid through the pores while preventing the media from traveling through the pores. The containment member may be in various shapes and include different numbers of components. One variation of the containment member includes first and second containment layers comprised of the rigid porous polymer, which are configured and arranged so as to form a space therebetween in which the media is contained. Another variation of the containment member includes first and second porous polymer tubes forming a space in which the media is contained. Also featured is a method of using the device. Another aspect of the invention is a system that includes the device and a pH adjuster device that may function as an acidifier or basifier, which improves the performance of the liquid treatment device in removing substances from liquids by raising or lowering the pH of the influent traveling through the media of the liquid treatment device.
Abstract:
A process for separating sulfonic acid compounds from a phenolic solvent is provided by contacting the phenolic solvent with a hydrotalcite-type material (HTM). The process can be applied in the conventional industrial process for converting cumene to phenol to remove sulfonic acid compounds from the phenol product. A process and a facility for producing purified phenol by converting cumene to phenol are provided. In the conversion of cumene to phenol, the phenol often contains carbonyl-type impurities. The phenol and carbonyl-type impurities are reacted in the presence of a sulfonic acid cation exchange resin catalyst (IER) to produce a reaction product that may contain sulfonic acid compounds. The reaction product is contacted with an HTM to reduce the amount of sulfonic acid compounds which may be present and to produce a purified phenol-containing stream. The purified phenol-containing stream may be further purified using conventional separation techniques, such as distillation.
Abstract:
Adsorbents for high mobility group proteins (HMG proteins) whereby HMG proteins in a body fluid can be eliminated. These adsorbents are composed of a water-insoluble support on which a substance having a functional group capable of forming a hydrogen bond and/or a hydrophobic functional group is immobilized.
Abstract:
A high capacity hybrid ion exchange material with enhanced ability to selectively remove molecular (organics) and anionic (fluoride ion and oxyanions of phosphorus and arsenic) species from drinking water, industrial streams, and wastes, for applications predominantly in the medical and food industries.
Abstract:
A method of sorbent dialysis is provided for enhanced removal of uremic toxins, such as toxic anions and/or organic solutes, from spent dialysate. More highly adsorbable zirconium polymeric complexes of these anions and/or organic solutes can be initially formed in spent dialysate by treatment with zirconium salt solution or other zirconium cation source, and then removed with adsorbent to provide purified or regenerated dialysate. Sorbent dialysis systems for detoxifying spent dialysate containing toxic anions and organic solutes are also provided.
Abstract:
A method for producing an anion-exchanging LDH using a carbonate ion-type layered double hydroxide represented by general formula Q a T(OH) z (CO 3 2- ) 0.5-b/2 (X - ) b ·H 2 O (where 1.8≤a≤4.2, z=2(a+1), 0≤b - is an element or atom group that turns to monovalent anion) as a starting material, with value b increased at least to 0.5 and a maximum of 1, wherein the carbonate ion-type layered hydroxide is made to contact an alcoholic solution containing an acidic compound (MX m ) (where m=1, 2, or 3; when m=1, M is H or NRR'R"·H, with R, R', and R" being H or organic group; and when m=2 or 3, M is a metal salt, namely a divalent or trivalent metal).