Abstract:
An indexable ball end mill comprising first to third inserts having arcuate cutting edges detachably attached with first to third screws to first to third seats in a semispherical tip end portion of a tool body; a first threaded hole for the first screw slantingly penetrating a slit-shaped first seat; the first insert having an inclined hole to avoid interference between the first screw and the second and third screws; a hole of the first insert and the first screw having at least partially finished surfaces, so that when the first screw penetrates the first insert attached to the first seat, the first insert is precisely positioned by tight engagement of both finished surfaces.
Abstract:
A milling insert for center cutting milling of material is disclosed, which milling insert is arranged to be arranged in a seat that is defined by a milling cutter body and situated at a rotation axis defined by the milling cutter body, the milling cutter body being connectable to a rotatable holder. The milling insert includes a plurality of cutting edges, where at least one first cutting edge is terminated in or adjacent to a center axis defined by the milling insert, the first cutting edge including a first cutting edge portion having a first radius that is essentially equally great for each point of the first cutting edge portion. The first cutting edge includes at least one second cutting edge portion that is plane or has at least one second radius for each point of the respective second cutting edge portion, the at least one second radius being greater than the first radius. The at least one second cutting edge portion is situated between the first cutting edge portion and the center axis, one of the at least one second cutting edge portion adjoins the first cutting edge portion, and one of the at least one second cutting edge portion is terminated in or adjacent to the center axis. Also disclosed are a tool for center cutting milling of material, including the milling insert, and a device for center cutting milling of material, including a milling cutter body that is connectable to a rotatable spindle or holder and defines a rotation axis, the milling cutter body including a plurality of cutting edges, where at least one first cutting edge corresponds to the first cutting edge mentioned above.
Abstract:
In the radius end mill, main gash faces has an angle of inclination with respect to an axis that is smaller than a twist angle of chip discharge flutes. The main gash faces are formed on inner circumferential sides of distal end portions of wall surfaces that face in a tool rotation direction of helically twisted chip discharge flutes, which is formed on an outer circumference of a distal end portion of a tool body that is rotated around the axis. End cutting edges are formed on a distal end of the main gash faces. Sub gash faces has an angle of inclination with respect to the axis that is greater than that of the main gash faces. The sub gash faces are formed on an outer circumferential side of the main gash faces such that they extend away via step portions from the main gash faces. In addition, corner cutting edges that have a protruding arc-shaped contour are formed to be continuous with an outer circumferential side of the end cutting edges extending from a distal end as far as an outer circumference of the sub gash faces.
Abstract:
In this insert, in addition to the insert being formed so that the cutting edge is twisted at a helix angle within the range of 5° to 25° about the axis when the insert is attached to the insert mounting seat, the thickness of the insert body at the flank located on a straight line, which passes through the center of the rough hemisphere formed by the rotational locus of the cutting edge and forms an angle of inclination of 90° relative to the axis, is set to be within the range of 0.5D to 0.9D relative to the thickness D of the rough plate that composes the insert body. As a result, since a comparatively gentle but adequately large helix angle is imparted to the cutting edge, cutting resistance decreases. In addition, since the thickness of the insert body at the flank on the rear end side of the insert body is not excessively thin, the rigidity of the insert body is adequately secured.
Abstract:
In the radius end mill, main gash faces has an angle of inclination with respect to an axis that is smaller than a twist angle of chip discharge flutes. The main gash faces are formed on inner circumferential sides of distal end portions of wall surfaces that face in a tool rotation direction of helically twisted chip discharge flutes, which is formed on an outer circumference of a distal end portion of a tool body that is rotated around the axis. End cutting edges are formed on a distal end of the main gash faces. Sub gash faces has an angle of inclination with respect to the axis that is greater than that of the main gash faces. The sub gash faces are formed on an outer circumferential side of the main gash faces such that they extend away via step portions from the main gash faces. In addition, corner cutting edges that have a protruding arc-shaped contour are formed to be continuous with an outer circumferential side of the end cutting edges extending from a distal end as far as an outer circumference of the sub gash faces.
Abstract:
An end mill chucking structure for chucking an end mill having a relatively small diameter and used, for example, for deep milling of a die. The end mill chucking structure includes an end mill holder and an end mill. A holder body has a taper hole formed therein. The end mill includes an end mill body and a cutting tip provided at an end portion of the end mill body. A portion of the end mill body located opposite the cutting tip serves as a tapered shank portion. The shank portion and the rest of the end mill body are bounded by a shoulder extending outward from the surface of the shank portion. The shank portion is press-fitted or shrink-fitted into the taper hole such that the end face of the holder body abuts the shoulder of the end mill body, through application to the holder body of heat at a temperature lower than a conventional shrink-fitting temperature.
Abstract:
A spherical cutter and cutter holder arrangement, which includes a cutter holder and a spherical cutter mounted in a longitudinal mounting slot at the cutter holder and fixed thereto by a screw, wherein the spherical cutter has a first cutter layer and a second cutter layer, each cutter layer having a plurality of cutting edges spaced around the periphery, and a plurality of plane notches respectively spaced between each two adjacent cutting edges, the cutting edges of one cutter layer being respectively arranged with the plane notches of the other cutter layer at same azimuth, the cutting edges and the plane notches each having a head portion and a tail portion, the head portion and tail portion of one cutting edge of one cutter layer being respectively connected to the tail portion and head portion of one cutting edge of the other cutter layer, the head portion and tail portion of every plane notch of one cutter layer being respectively connected to the tail portion of one plane notch of the other cutter layer and the head portion of another plane notch of the other cutter layer, thereby defining a plurality of cutting mouths.
Abstract:
To increase the sturdiness and precision of a double-edged milling cutter having a single cutting tip, the cutting tip is inserted in a recess of a milling cutter body, with the recess being constituted by two spaced-apart opposite sidewalls. One sidewall is designed as a rigid sidewall. By way of a cavity extending transversely of the longitudinal axis of the milling cutter body, the thickness of the other sidewall is locally reduced across the entire width thereof, so that it is "elastic". The cutting tip is fixed between the two sidewalls by means of a mounting screw.
Abstract:
A cutting plate for a ball-head finish miller has a support body of hard metal centered on an axis and having a pair of oppositely directed and symmetrically oriented faces each formed with a respective substantially circularly segmental recess of a predetermined depth. A pair of substantially identical and substantially circularly segmental cutting inserts are each secured to a respective one of the faces in the respective recess and each have a respective cutting layer forming a cutting edge. The inserts and their edges are symmetrical with respect to the axis and are each of a thickness substantially less than the depth of the respective recess so that each forms a chip cavity on the respective face.
Abstract:
A cutting tool particularly adapted for machining brittle plastics in which the cutting head has its cutting edges in the first and fourth quadrants of the x-y axes and contained in a common plane on opposite sides of the axis of tool rotation. The cutting edges are on two planar inserts, which can be either integral or separate elements, which meet at the common plane and each of which is relieved or cut away in the opposite quadrant from its own cutting edge to expose the cutting edges of the other. The walls defining the reliefs have 2 or more non-aligned sections forming different angles with the axis of rotation with the steepest angle beginning at the axis and preferably inwardly of the tip of the tool and, overall, exposing not less than a full quadrant of the cutting edge of the other insert while providing cavities and contours which control the movement of the chips and the flow of coolant fluids. The shank which holds the cutting head includes a fork whose tines embrace the planar inserts and include contouring compatible with the geometry of the reliefs to allow for the flows of chips and coolant, the paths for which are formed in the shank and inserts in complementary fashion.