Abstract:
During elevator modernization, a cross-dispatching system receives hall calls and assigns each hall call to either a group of existing elevator car controllers or a group of new elevator car controllers. The cross-dispatching system creates an inter group relative system response (iRSR) value for the hall call for both the existing group of elevators and the new group of elevators, based upon information from each group such as car location, in-service status, load, and direction. If the group assigned the hall call does not answer the call within a redispatch time period, the cross-dispatching system again calculates the iRSR for each group and reassigns the hall call.
Abstract:
An elevator group management system improving operational efficiency in consideration of a situation change that has occurred after a destination floor registration in a hall. An assigned car review mechanism executes assigned car review processing in units of review registration information sets each including at least one piece of provisionally assigned car registration information managed by a registered destination floor hall call management section during a review period. After ending the assigned car review processing, the assigned car review mechanism modifies the contents of the provisionally assigned car registration information in the registered destination floor hall call management section based on the contents of the review registration information set after modification. That is, the assigned car review mechanism newly registers the provisionally assigned car registration information after review and erases the provisionally assigned car registration information before review at the same time.
Abstract:
During elevator modernization, a cross-dispatching system receives hall calls and assigns each hall call to either a group of existing elevator car controllers or a group of new elevator car controllers. The cross-dispatching system creates an inter group relative system response (iRSR) value for the hall call for both the existing group of elevators and the new group of elevators, based upon information from each group such as car location, in-service status, load, and direction. If the group assigned the hall call does not answer the call within a redispatch time period, the cross-dispatching system again calculates the iRSR for each group and reassigns the hall call.
Abstract:
As elevator group including at least two elevator cars is controlled using a group control unit which allocates the calls to different elevators. Based on statistical data and/or statistical forecasts, virtual passenger traffic is generated and used in a simulation that creates events in the virtual passenger traffic, on the basis of which an elevator-specific cost is computed for each call to be allocated. Based on the costs, the best elevator is selected to serve the call. This allocation of a best elevator to answer a specific landing call may be reallocated as the simulation is updated to update the best elevator to answer a specific floor call.
Abstract:
In a two-way ring elevator communications system, characterized in that a controller is associated with each elevator to process inter-elevator messages and the controllers of the elevators are linked together in serial fashion on a two-way communications system so that the messages of each controller are passed along to and processed by each of the other controllers in two directions on two independent rings, whichever of the two rings is properly functioning is used at full capacity but if neither ring is properly functioning then both rings are operated at reduced capacity, the reduction being carried out by reducing the time between reassignments of elevator hall calls.
Abstract:
A method of optimizing the handling of coincident calls in an elevator system which employs ETA strategy in assigning hall calls to a plurality of elevator cars. The method dynamically biases the ETA value of a car having a car call for the floor of the hall call being assigned, with the bias being applied to favor assignment of the hall call to the car having the coincident car call. The amount of the bias is inversely proportional to the car travel distance between the advanced position (AVP floor) of the elevator car and the floor associated with the hall call (scan floor). The relative effect of the bias is predetermined for each floor by preselection of a constant K used in the bias calculation.
Abstract:
According to an example embodiment, an apparatus for scheduling elevator transport in an elevator system comprising one or more elevators is provided. The apparatus may be configured to: obtain, for a plurality of passengers, a respective transport request for elevator transport using said one or more elevators, the transport request comprising at least respective indications of an origin floor, a destination floor and a requested transport time window; derive, in dependence of said plurality of transport requests, a transport schedule that includes a respective transport allocation for each of said plurality of passengers, wherein a transport allocation for a passenger is derived in accordance with the requested transport time window indicated for the respective passenger, in view of transport allocations derived for other passengers and in view of a transport capacity of said one or more elevators and wherein the transport allocation for a passenger comprises at least a scheduled transport time for the respective passenger; and operate said one or more elevators in accordance with the derived transport schedule.
Abstract:
The invention concerns a method for a passenger-allocation in a multi-deck elevator group, the decks of which defining elevator cars, respectively, being stacked above each other and being mounted in a car frame to be moved synchronously in an elevator shaft. The method being performed by a control unit to dispatch the elevator cars for serving any passenger call which can be entered as a landing call or a car call, wherein a call can create a number of allocation proposals calculated by means of an optimization algorithm carried out by the control unit for dispatching an elevator to a passenger call. The invention is characterized in that said allocation proposals are then processed in a routing algorithm defining one serving deck to be taken for the allocation of a specific call, which routing algorithm is restarted either for any further incoming call independent of whether said further incoming call is creating new elevator allocation proposal(s) or when a reallocation timeout has passed. The invention further relates to a computer program carrying out the inventive method.
Abstract:
Provided are a group control method and a group control device capable of efficiently controlling the operation of elevators in diversified traffic situations and under a variety of specification conditions required for a group management system. A plurality of elevators are placed in service for a plurality of floors, an evaluation index for a newly made hall call is calculated, and the best suited car is selected and assigned to the hall call based on the evaluation index in the group control method of elevators. A waiting time expectation value of all passengers on all floors for each direction, either that have already occurred or that are expected to occur within a predetermined time period, is taken as the evaluation index, the waiting time expectation value being the expectation value for the sum or the average of waiting time.
Abstract:
A control device for a double-deck elevator system having an upper deck and a lower deck, includes a group control device for assigning the upper and lower decks to respond to car calls from the upper and lower decks and boarding hall calls from a plurality of floors. The control device further includes an assignment control device for determining whether a plurality of the car calls and boarding hall calls can be responded to simultaneously and for directing said group control device to reassign the upper and lower decks to respond to the plurality of car calls and boarding hall calls simultaneously.