Abstract:
Porous dielectric materials having low dielectric constants useful in electronic component manufacture are disclosed along with methods of preparing the porous dielectric materials. Also disclosed are methods of forming integrated circuits containing such porous dielectric materials.
Abstract:
Porous dielectric materials having low dielectric constants useful in electronic component manufacture are disclosed along with methods of preparing the porous dielectric materials. Also disclosed are methods of forming integrated circuits containing such porous dielectric materials.
Abstract:
A composition has a polymeric network that includes a porogen and a photoinitiator. The photoinitiator produces a reactive species upon irradiation, which reacts with the porogen in a degradation reaction that degrades at least some of the porogen. A method of forming a nanoporous polymer has one step in which a plurality of polymeric strands, a photoinitiator, and a porogen are provided. In a subsequent step, at least some of the polymeric strands are crosslinked to form a polymeric network that includes the porogen and the photoinitiator, and in a further step the photoinitiator in the polymeric network is irradiated to generate a reactive species that reacts with the porogen in a degradation reaction to degrade at least some of the porogen.
Abstract:
The present invention provides a process for producing porous polymer materials. In the present invention, a polymer material and a soluble material are mixed in their solid states. The surface of the polymer material is partially dissolved and fused by introducing a solvent. The present invention makes use of a pressure difference while introducing a non-solvent into the polymer material to solidify and resolve the solved polymer material. Then, a substantial amount of water is used to wash the inside soluble material out. Therefore, the porous polymer materials with high porosity and interconnecting pores inside the materials are produced massively and rapidly.
Abstract:
Nanoporous materials are fabricated from polymers having backbones with reactive groups used in crosslinking. In one aspect of preferred methods and compositions, the reactive groups in the backbone comprise a diene and a dienophile. The diene may advantageously comprise a tetracyclone, and the dienophile may advantageously comprise an ethynyl. In another aspect of preferred methods and compositions, the reactive groups in the backbone are included in a conjugated system. Especially preferred polymeric strands comprise a poly(arylene ether) synthesized from a difluoroaromatic portion and an aromatic bisphenolic portion. It is still more preferred that the difluoroaromatic portions of the poly(arylene ether) are modified in such a way that some difluoroaromatic portions carry a thermolabile portion. In still other aspects crosslinking may advantageously occur without reliance on an exogenous crosslinker.
Abstract:
Porous organo polysilica dielectric materials having low dielectric constants useful in electronic component manufacture are disclosed along with methods of preparing the porous organo polysilica dielectric materials. Also disclosed are methods of forming integrated circuits containing such porous organo polysilica dielectric materials.
Abstract:
The invention provides new light absorbing crosslinking compositions suitable for use as an antireflective composition, particularly for deep UV applications. The antireflective compositions of the invention comprise a photoacid generator that is activated during exposure of an overcoated photoresist. Antireflective compositions of the invention can significantly reduce undesired footing of an overcoated resist relief image.
Abstract:
A printing material composed of an open-cell sponge rubber capable of including therein a colored ink, which does not necessitate a stamp pad for the stamping operation, is disclosed. This printing material is prepared by adding appropriate amounts of soluble starch and a fine powder of an easily water-soluble salt which does not decompose or gasify at a curing temperature to a mixture of a starting rubber, a curing agent and a filler, kneading and milling the mixture, introducing the mixture into a mold, heating the mixture to effect curing, removing said starch and salt by washing, and drying the resulting product.