Abstract:
Nickel-containing carbon nanofiber (NiCNF) materials and lubricants comprising the nanofiber materials are described herein. The NiCNF materials comprise a plurality of elongate nickel-containing carbon nanofibers. Each NiCNF comprises a carbon nanofiber shaft that is capped at one end by a nickel nanoparticle encapsulated in multiple layers of graphitic carbon. The nanofibers typically have a generally circular cross-section (i.e., in the direction perpendicular to the length-axis of the fibers). The NiCNF materials as useful, e.g., in lubricant compositions, which also are described herein.
Abstract:
A solid lubricant for being embedded in pores or grooves formed at a sliding surface of a sliding member body, comprises 5 to 30% by volume of a polyethylene resin, 20 to 60% by volume of a hydrocarbon-based wax and 10 to 60% by volume of melamine cyanurate. Such a solid lubricant can exhibit sliding properties identical to or higher than those of lead-containing solid lubricants, even under high load conditions.
Abstract:
An anti-seize composition includes lubricating solids and at least one of a material selected from a grease and an oil. The lubricating solids include at least 15 weight percent of nano-sized lubricating solid particles. The nano-sized lubricating solid particles each have at least one dimension, on average, of less than 500 nm.
Abstract:
Pressureless sintered high density materials containing hexagonal boron nitride have low coefficients of friction and high wear resistance and are useful for bearings, bushings and other articles subjected to bearing loads.
Abstract:
A method of making a lubricant is disclosed. The method includes providing a hard nanosphere having a size of less than about 500 nanometers. The method also includes exposing the nanosphere to a radiation energy to at least partially bond a functional agent to a surface of the nanosphere.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
This invention relates to a threaded joint for steel pipes which comprises a pin and a box each having a contact surface including a threaded portion and an unthreaded metal contact portion and which guarantees galling resistance and gas tightness in a stable manner without application of a compound grease. A solid lubricating coating comprising a lubricating powder (e.g., molybdenum disulfide) and an organic or inorganic binder is formed on the contact surface of at least one of the pin and the box. The proportion of area of a cross section along the thickness of the solid lubricating coating which is occupied by secondary particles of the lubricating powder having an equivalent circular diameter of 15-60 nullm is from 5-90%. Alternatively, the solid lubricating coating comprises, in addition to the lubricating powder, a fibrous filler (e.g., inorganic whiskers) in such an amount that the mass ratio of the fibrous filler to the binder is 0.01-0.5. As a result, galling resistance is improved, particularly at high temperatures.