Abstract:
A coated woven textile fabric is disclosed which is formed of synthetic yarns of more than one denier preferably synthetic filamentary yarns of differing deniers. A polymeric coating such as polyurethane is layered on at least one side thereof, but may also be provided on both sides. The combination of yarns of different deniers provides a superior adhesion surface for the polymeric coating. The yarns and the polymeric coating are preselected respectively in deniers and thickness so as to render the fabric substantially impermeable to fluid under pressure, while maintaining superb packageability and antiblocking properties for use in vehicle occupant restraint systems. A flexible lightweight air bag for receiving and containing fluid under pressure for use in a vehicle air restraint system is also disclosed, incorporating the woven textile fabric of the invention.
Abstract:
There is described an electroconductive tow or yarn, made from continuous filaments or staple fibers yarns, prepared from stabilized petroleum pitch, coal tar pitch or a synthetic fiber forming material which on at least partial carbonization is electroconductive, for example, polyacrylonitrile, are formed into coil-like fibers or filaments by winding the tow or yarn on a mandrel, but preferably by knitting the tow or yarn into a cloth, and heat treating the so formed tow or yarn to a carbonizing temperature (450.degree. C. to about 1500.degree. C.) to set a coilure (a non-textile crimp) therein as well as electroconductance thereto, and incorporating the coilure structure into scrim yarns, scrim capcoats, composites with tuft-lock components as well as incorporation into the carpet yarns, to provide an anti-static property to the finished carpet.
Abstract:
A method of making a mat with a textile surface and an elastomer backing is provided. The method includes mixing elastomer crumbs and a binder, depositing the crumb/binder mixture in a layer (22), placing a textile surface element (34) on the layer to form a mat assembly, and pressing the mat assembly in a press (9) while setting the binder. The elastomer crumbs are consolidated to form an elastomer backing (2) that includes voids between the elastomer crumbs, and the textile surface element is bonded to the elastomer backing to form the upper textile layer (1) of the mat.
Abstract:
A tufted carpet (10) comprises consecutively a primary backing (12), stitched with loops of yarn (14) to form a tufted structure projecting outwardly from the primary backing (12), a polyolefin locking layer (16), a moisture barrier polyolefin layer (18), and a secondary backing (20) comprising a woven polyolefin.
Abstract:
A conductive carbonaceous fiber is provided, comprising a carbonaceous material obtained from carbonizing an electrospun fiber wherein said fiber comprises at least one conductive metal precursor. The electrospun fibers can be formed into fibrous mats during spinning, stabilization and carbonization that are conductive materials which can be used to make stretchable conductors for flexible electronic devices. The invention relates also to the process for making the fibers, corresponding elastomeric fibrous mesh/polymer composites as well as use of these composites for making stretchable electrical conductors. The obtainable elastomeric composite films (with a thickness in the range of 0.8 to 1.5 mm) exhibit good electrical conductivity and excellent electromechanical stability under mechanical deformations (e.g. elongating, twisting and bending). The scalable fabrication process and low-cost precursors make the elastic electrospun carbon fibers / polymer composite conductors promising materials for applications in flexible electronic devices, displays, sensors, wearable conducting clothes, implantable medical devices, etc.
Abstract:
A tufted carpet (10) comprises consecutively a primary backing (12) stitched with loops of yarn (14) to form a tufted structure projecting outwardly from the primary backing (12), a layer of latex (16), a latex of polyolefin (18), and a secondary backing (20) comprising a woven polyolefin.
Abstract:
The present invention provides a fiber-reinforced resin intermediate material, including not only a thermoplastic resin but also a thermosetting resin, in which defects such as voids are difficult to be generated and which is excellent in shaping ability; and a method for manufacturing the same. The fiber-reinforced resin intermediate material according to the present invention is a fiber-reinforced resin intermediate material formed by attaching a resin to an outer surface part of a reinforcing fiber substrate formed of reinforcing fibers subjected to opening and heating the resin to a temperature equal to or higher than the melting point of the resin to impregnate the reinforcing fiber substrate with the resin, wherein the reinforcing fiber substrate has void space that is opened on an outer surface thereof and the resin is in a semi-impregnated state.
Abstract:
A mat with a textile surface (1) and an elastomer backing layer (2) that includes elastomer crumbs and a binder. The elastomer backing layer (2) includes voids between the elastomer crumbs for increased flexibility.
Abstract:
A method of making a mat with a textile surface and an elastomer backing is provided. The method includes mixing elastomer crumbs and a binder, depositing the crumb/binder mixture in a layer (22), placing a textile surface element (34) on the layer to form a mat assembly, and pressing the mat assembly in a press (9) while setting the binder. The elastomer crumbs are consolidated to form an elastomer backing (2) that includes voids between the elastomer crumbs, and the textile surface element is bonded to the elastomer backing to form the upper textile layer (1) of the mat.
Abstract:
A mat with a textile surface (1) and an elastomer backing layer (2) that includes elastomer crumbs and a binder. The elastomer backing layer (2) includes voids between the elastomer crumbs for increased flexibility.