Abstract:
A composite hybrid cord comprising a core comprising of a first bundle of synthetic filaments having a filament tenacity of from 10 to 40 grams per decitex and a plurality of cabled strands helically wound around the core, each cabled strand comprising of a plurality of metal strands helically wound around a center second bundle of synthetic filaments that have a filament tenacity of from 10 to 40 grams per decitex. The ratio of the largest cross sectional dimension of the first bundle of synthetic filaments to the largest cross sectional dimension of the second bundle of synthetic filaments is from 1.5:1 to 20:1. The metallic filaments of the cabled strands have an elongation at break that is no more than 24 percent different from the elongation at break of the synthetic filaments of the first and second bundles.
Abstract:
The pneumatic tire according to the present technology has a reinforcing layer in which a plurality of steel cords is laid in parallel and embedded in rubber, wherein each steel cord is configured from a plurality of wires twisted together, the wire diameter is from 0.15 mm to 0.40 mm, each wire is configured from a core and a plating layer formed on the periphery of the core, the core is made from carbon steel with a carbon content of from 0.60 mass % to 0.75 mass %, the average thickness of the plating layer is from 0.23 μm to 0.33 μm, and the strength of the steel cord is from 3000 MPA to 3500 MPa.
Abstract:
A steel cord for reinforcing rubber articles in which sheath wires are not deviated and which has an excellent rubber penetration property and a tire which has an excellent durability using the steel cord is provided.A steel cord for reinforcing rubber articles composed of a core 10 composed of two untwisted steel wires 1 and six sheath wires 2 which are twisted around the core 10 is disclosed. The average of gap distances between the adjacent sheath wires 2 is 24 μm or larger, and the occupancy of the sheath wires 6 disposed around the core 10 with respect to a sheath wire disposition area is 80% or larger. A pneumatic tire in which the steel cord is applied on both a carcass and (a) belt layer(s) or applied on either the carcass or the belt layer(s) is also disclosed.
Abstract:
A steel structure adapted for the reinforcement of elastomeric members has steel elements containing a plurality of steel filaments at least one of which filaments is provided with first and second crimps. The first crimp lies in a plane that is substantially different from the plane of the second crimp. Application of the both crimps can be carried out efficiently using two pairs of toothed wheels which are not externally driven. This arrangement renders it possible to obtain steel structures with an increased penetration of rubber or with an increased elongation at break.
Abstract:
A steel cord comprises a core of three or more filaments bundled without twisting and a sheath of at least one layer comprised of plural filaments wound around the core, wherein all core filaments are arranged in a given rectangle at any section in its longitudinal direction. Such steel cords are used in a belt of a pneumatic tire. And also, these cords are produced by a tubular-type twisting machine having a specified structure.
Abstract:
A steel structure adapted for the reinforcement of elastomeric members has steel elements containing a plurality of steel filaments at least one of which filaments is provided with first and second crimps. The first crimp lies in a plane that is substantially different from the plane of the second crimp. Application of the both crimps can be carried out efficiently using two pairs of toothed wheels which are not externally driven. This arrangement renders it possible to obtain steel structures with an increased penetration of rubber or with an increased elongation at break.
Abstract:
A steel cord is disclosed, which has a core-sheath double layer structure having a 2+7 cord construction or a 2+8 cord construction. A twisting direction of the core is the same as that of the sheath, a forming rate Rc of filaments of the core is 103 to 120%, and a forming rate Rs of filaments of the sheath is 102 to 115%. A pneumatic radial tire using such steel cords in a belt layer is also disclosed.
Abstract:
A steel cord for the reinforcement of rubber articles has a three-layer twisting structure comprising a core of 2 steel filaments, a middle sheath layer of 6 steel filaments and an outer sheath layer of 11 steel filaments, in which a ratio of filament diameter ds in the middle and outer sheath layers to filament diameter dc in the core (ds/dc) is within a range of 1.15-1.5 and a twisting pitch of the core is not less than 20 mm, and is used as a reinforcing member in a heavy duty pneumatic radial tire, conveyor belt and the like.
Abstract:
A method of manufacture and a resultant cable structure of elliptical stranded cable which optimizes the use of existing conventional stranding machines. In accordance with the present invention, one or more layers of shaped, non-circular, wires are interposed to provide support between the inner core of substantially round wires each having essentially the same diameter and the outer layer of round wires of different diameters, which outer layer includes round wires of different diameters which are arranged to provide the minor and major axes of the elliptical cable. The shaped wires are preferably trapezoidal in shape. Alternatively, the shaped wires may be arcuately shaped elliptical wires subtending an angle determined by dividing 360.degree. by the number of shaped wires (for example, 30.degree. for a twelve wire layer) and having an aspect ratio (ratio of major axis X dimension to minor axis Y dimension) sufficient to provide support between the inner core and outer layer of round wires. As a result of the use of such wires, the elliptical cable can be made by using the smallest capacity machine for a given size of cable, thereby optimizing the use of such machinery and minimizing the time spent in stranding.
Abstract:
A steel cord comprising a core and a sheath arranged around the core. The core consists of two steel filaments, and the sheath consists of eight steel filaments. The diameter of each of the filaments is in a range from 0.30 to 0.42 mm, and a difference D.sub.c -D.sub.s between the diameter D.sub.c of the filaments of the core and that D.sub.s of the sheath is not less than 0.04 mm. The twisted direction of the core is the same as that of the sheath, and a ratio P.sub.s /P.sub.c between a pitch P.sub.s of the sheath and that of P.sub.c of the core is in a range from 1.4 to 3.0.