Abstract:
A system 10 and method of operating the system 10 are disclosed. The system 10 includes a compressor 20, a combustion engine 30, and an input system 60. The compressor 20 is configured to mix and compress a liquid hydrocarbon fuel 15 and a first hydrocarbon gas fuel 17, thereby to form a liquid fuel mixture 21. The combustion engine 30 is disposed downstream of the compressor 20 and includes a dual fuel injection system 40 and a combustion chamber 50. The dual fuel injection system 40 includes a nozzle 42 that is configured to inject the liquid fuel mixture 21 into the combustion chamber 50 of the combustion engine 30. The input system 60 is fluidly connected with the combustion engine 30, and configured to inject air 62 and a second hydrocarbon gas fuel 64 into the combustion chamber 50.
Abstract:
A method of converting a diesel engine to a natural gas engine comprising inserting a spark plug into a diesel fuel injector opening in a cylinder head; installing a throttle body on the diesel engine; installing a throttle body adaptor between a throttle body and an intake manifold of said diesel engine; and modifying a piston, whereby the compression ratio of said piston is decreased during operation of said piston. The method also includes installation of a waste gate and waste gate adaptor and a timing mask.
Abstract:
The invention is directed to a variable compression ratio internal combustion engine in which the compression ratio of the engine can be varied and multiple types of fuels having different combustion velocities are used. The invention provides a technology for achieving excellent engine performance for respective types of fuels. In the variable compression ratio internal combustion engine in which the compression ratio can be varied and multiple types of fuels having different combustion velocities are injected through multiple fuel injection valves, maps from which a target compression ratio of the internal combustion engine is read out are switched in accordance with the fuel used, thereby suppressing knocking or other disadvantages.
Abstract:
A Homogenous Charge Compression Ignition (HCCI) engine and operating method having ignition timing controlled on a cycle to cycle basis by adding to a primary fuel, which is typically greater than 95% and is a gas such as natural gas with a relatively slow burn rate, varying amounts of high cetane number fuel, typically diesel fuel, before or early in the compression stroke. The amount of high cetane fuel that is injected depends on engine speed and load, and is selected to insure that combustion is phased properly with crankshaft position. The ignition delay is thus controlled substantially independently of the burn duration, which is controlled by varying the amount of Exhaust Gas Recirculation (EGR) in conjunction with the air to fuel ratio so as to maintain a near constant crank angle burn duration over a wide range of engine speeds. Because of the relatively slow burn rate of the natural gas after ignition, relatively low EGR levels and high boost levels are practical with the subject HCCI engine so that its power density is greater than that of previous HCCI engines. The load and speed of the subject HCCI engine may be controlled over a wide range by varying the overall air to fuel ratio or the boost pressure. The high cetane liquid fuel may be injected together with the gas and early in the compression stroke so that the gas atomizes the liquid upon injection.
Abstract:
A bi-fuel control system and assembly for modifying and operating a diesel engine to the extent that the engine is capable of running in either a full diesel fuel mode or a bi-fuel mode, where bi-fuel is defined as a mixture of a methane based gas and diesel fuel. The control system and assembly are designed to provide for either manual or automatic transfer between modes for continuous engine operation without interruption in output and at substantially equivalent efficiency levels. A gas control sub-system and sub-assembly are provided to control the amount of gas supplied to the diesel engine in the bi-fuel mode, and an electronic control sub-system and sub-assembly are provided to control the overall system and assembly based on engine load as determined from the intake manifold air pressure.
Abstract:
A fuel injection method for diesel internal combustion engines uses main injection of a gas main fuel and pilot injection of a liquid secondary fuel to initialize combustion of the main fuel. The liquid fuel is injected by an injector pump designed to enable the engine to achieve its maximum power with the liquid fuel only. The pilot injection comprises a mixture of water and liquid fuel.
Abstract:
A fuel injection structure for dual fueled combustion engines having access to the combustion chamber of a cylinder to automatically supplement a liquid fuel with a gaseous fuel, the structure being adapted to supply the gaseous fuel by a programmed electronic control circuit which regulates the operation of fuel injection to be in accord with certain sensed engine operation parameters to determine from said parameters a desired gaseous fuel flow rate and a signal responsive to said parameters actuating a valve to control said flow.
Abstract:
This is concerned with a method of operating a dual-fuel engine, meaning an engine that is supplied with a mixture of gaseous fuel and air which is ignited by an injection of a small amount of so-called pilot oil which is diesel fuel. Additionally the invention is concerned with a method of operation that injects an approximately constant amount of pilot oil regardless of speed variations so as to save fuel at the higher speeds and is specifically applicable or useful with over-the road dual fuel engines, meaning mobile units on trucks, tractors, etc.
Abstract:
An injector apparatus for an internal combustion engine and suitable for injecting two different fuels, namely a "pilot injection" liquid fuel and a "main injection" liquid or gaseous fuel comprising a low-pressure pump (1B) for pilot injection fuel feed, a high-pressure pump (1A) of the injection pump type, two fuel injectors, and a metering pump (30) selectively connecting the low-pressure pump, the high-pressure pump, and the two fuel injectors. The metering pump (30) includes a transfer piston (2) and two abutments (3, 4) which are independently adjustable so as to vary the relative importance of pilot injection and of main injection and also vary the extent to which the two injection stages overlap.
Abstract:
A gas-diesel dual fuel engine operative with both a gaseous fuel and a diesel fuel oil. The engine has an electronic governor circuit adapted to receive both a speed signal representing actual speed of engine and a set speed signal representing a predetermined command speed of the engine, electric actuators adapted to actuate a diesel fuel injection pump and a gaseous fuel regulating valve, respectively, in response to the signal from the electronic governor circuit, and a mode switching control circuit connected to the electronic governor circuit and adapted to switch the operation of the electric actuators between a diesel fuel operation mode and a gaseous fuel operation mode.