Abstract:
The invention relates to an apparatus (1) and a method for the condition-dependent maintenance of hydrostatic displacement units (2), in particular axial piston machines (3) operated as pumps or motors. Mounted on the hydrostatic displacement unit (2) are acceleration sensors (4) and/or contamination level sensors (5) which capture vibration data and/or contamination data of the hydrostatic displacement unit (2) and are connected to an evaluation unit (6) which temporarily stores the vibration data and/or contamination data. A communication unit (7) connected to the evaluation unit (6) retransmits said data.
Abstract:
A power pump performance analysis system and methods includes a signal processor connected to certain sensors for sensing pressures and stresses in the cylinder chambers and the inlet and discharge piping of a single or multicylinder pump. Pump speed and pump piston position may be determined by a crankshaft position sensor. Performance analyses for pump work performed, pump cylinder chamber stress, pump fluid end useful cycles to failure, and crosshead loading and shock analysis are provided for estimating pump component life and determining times for component replacement before failure.
Abstract:
A limiter device is provided in a variable displacement compressor capable of varying a discharge displacement per revolution and compressing a fluid in a cycle. The limiter device includes an operating characteristic acquiring means for acquiring a predetermined characteristic during a compression operation of the compressor, and a varying means for varying the discharge displacement of the compressor to a minimum side when the predetermined characteristic obtained by the operating characteristic acquiring means exceeds a predetermined value. Thus, the limiter device can prevent the compressor from being brought into trouble such as locking and can protect a driving belt and other auxiliary equipment on a side of an engine, while it is unnecessary to provide a pulley with a limiter function.
Abstract:
A reciprocating machine such as a vacuum pump includes a cylinder in which a reciprocating piston is disposed for reciprocating movement. A variable voltage driver is provided for driving the piston and a vibration sensor is provided for sensing contact between the piston and ends of the cylinder. A controller interconnects the sensor and driver to control movement of the driver and piston to maximize piston stroke and reduce if not eliminate contacting of the piston with the cylinder.
Abstract:
A method for monitoring the mechanical condition of a reciprocating compressor having a packed-plunger cylinder is provided. An end assembly is attached to one end of the cylinder, and the strain of at least one component of the end assembly is measured as the plunger reciprocates within the cylinder. The measured strain is correlated with a crank angle to facilitate generation of a strain profile. Two pressure values related to the pressure in the cylinder are determined when the plunger is at two different locations. This facilitates generation of a cylinder pressure profile based on the correlated measured strain. The cylinder pressure profile is thus generated without the use of intrusive gauges or sensors, which may create a leak path, or create a stress concentration in the wall of the cylinder.
Abstract:
A limiter device is provided in a variable displacement compressor capable of varying a discharge displacement per revolution and compressing a fluid in a cycle. The limiter device includes an operating characteristic acquiring means for acquiring a predetermined characteristic during a compression operation of the compressor, and a varying means for varying the discharge displacement of the compressor to a minimum side when the predetermined characteristic obtained by the operating characteristic acquiring means exceeds a predetermined value. Thus, the limiter device can prevent the compressor from being brought into trouble such as locking and can protect a driving belt and other auxiliary equipment on a side of an engine, while it is unnecessary to provide a pulley with a limiter function.
Abstract:
A fluid pumping system comprises a fluid machine (14); a sensor (26) operatively coupled to the fluid machine, the sensor being configured to obtain at least one of vibration data or acoustic data from the fluid machine; and a controller (22) communicatively coupled to the sensor. The controller includes a logic configured: to obtain at least one of the vibration data or the acoustic data from the sensor; to produce a characteristic signature for the machine based on the vibration data or the acoustic data; to compare the characteristic signature to a plurality of baseline signatures stored in a library of baseline signatures, each baseline signature characteristic of a prescribed operating condition of the fluid machine; and to predict an operation state of the fluid machine based on the comparison. The corresponding method for predicting an operational status of a fluid machine is also disclosed.
Abstract:
A power pump performance analysis system and methods includes a signal processor connected to certain sensors for sensing pressures and stresses in the cylinder chambers and the inlet and discharge piping of a single or multicylinder pump. Pump speed and pump piston position may be determined by a crankshaft position sensor. Performance analyses for pump work performed, pump cylinder chamber stress, pump fluid end useful cycles to failure, and crosshead loading and shock analysis are provided for estimating pump component life and determining times for component replacement before failure.
Abstract:
The present invention relates to a system and to a method of controlling a fluid pump (10), as well as to a linear compressor and a cooler provided with means to calibrate the respective functioning at the time of the first use or in cases of problems caused by electric or mechanical failures. According to the teachings of the present invention, the fluid pump (10) is provided with a piston-position sensing assembly (11), the electronic controller (16) monitoring the piston displacement within the respective cylinder by detecting an impact signal. The impact signal is transmitted by the sensing assembly (11) upon occurrence of a impact of the piston with the stroke end, the electronic controller (16) successively incrementing the piston displacement stroke upon a trigger signal as far as the occurrence of the impact to store a maximum value of piston displacement.